Jaël Champagne Gareau
Jaël Champagne Gareau
Accueil
Enseignement
Projets
Publications
Contact
Clair
Sombre
Automatique
Français
Français
English
MDP
Résolution efficace de processus décisionnels de Markov par l'exploitation d'approches structurelles et algorithmiques tirant parti de l'architecture moderne des ordinateurs
Cette thèse présente des contributions en planification automatique sous incertitude, un domaine de l’intelligence artificielle. …
Jaël Champagne Gareau
PDF
Citation
Projet
Diapositives
Towards Topologically Diverse Probabilistic Planning Benchmarks
Markov Decision Processes (MDPs) are often used in Artificial Intelligence to solve probabilistic sequential decision-making problems. …
Jaël Champagne Gareau
,
Éric Beaudry
,
Vladimir Makarenkov
PDF
Citation
Code
Projet
Diapositives
Cache-Efficient Dynamic Programming MDP Solver
Automated planning research often focuses on developing new algorithms to improve the computational performance of planners, but …
Jaël Champagne Gareau
,
Guillaume Gosset
,
Éric Beaudry
,
Vladimir Makarenkov
PDF
Citation
Code
Projet
Poster
Diapositives
DOI
Supplementary Material
Processus Décisionnels de Markov
Ce projet vise à trouver différentes façons d’améliorer la performance des planificateurs de (SSP-)MDP en considérant l’architecture des ordinateurs (p.ex., la mémoire cache, le parallélisme, etc.).
Code
Cache-Efficient Memory Representation of Markov Decision Processes
Research in automated planning typically focuses on the development of new or improved algorithms. Yet, an equally important but often …
Jaël Champagne Gareau
,
Éric Beaudry
,
Vladimir Makarenkov
PDF
Citation
Projet
Diapositives
DOI
pcTVI: Parallel MDP Solver Using a Decomposition Into Independent Chains
Markov Decision Processes (MDPs) are useful to solve real-world probabilistic planning problems. However, finding an optimal solution …
Jaël Champagne Gareau
,
Éric Beaudry
,
Vladimir Makarenkov
PDF
Citation
Projet
Diapositives
DOI
Citation
×