Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion

An Efficient Electric Vehicle Path-Planner That Considers the Waiting Time

Using graph relabeling and alternative paths generation

Jaël Champagne Gareau Éric Beaudry Vladimir Makarenkov

Computer Science Department Université du Québec à Montréal

November 8th, 2019

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation 00000	Conclusion O
Outline				

- 1 Motivation: Why we need to consider the waiting time
- 2 Base Planner
- Considering the Waiting Time
 Graph Relabeling
 - Alternative Paths Generation
- 4 Evaluation

5 Conclusion

Motivation:	Why we	need to	consider	the	waiting	time
00000	0					

Base Planner 000

Considering the Waiting Tim

Evaluation Conclu

Advantages of EV over conventional vehicles

Less pollution

Less noisy

Cheaper in the long run

Less maintenance

Motivation:	Why we n	eed to co	nsider the	waiting time
000000	0			

Base Planner

Considering the Wai

Global EV market 2010–2018¹

¹ http://www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes/

Motivation: Why we need to consider the waiting time	Base Planner 000	Considering the	Waiting Time	Evaluation 00000	Conclusion O
EV sales forecast ²					
Projected	annual sales 📃	Cumulative sales			
500 million vehicles			Electric vehicle account for 35	s would % of all	_
400					a
300					
200					
100		- 11			
2015 '16 '17 '18 '19 '20 '21 '22 '2	3 '24 '25 '26 '27	'28 '29 '30 '31 '	32 '33 '34 '35 '3	36 '37 '38 '39	40

Sources: Data compiled by Bloomberg New Energy Finance, Marklines

²Bloomberg, February 25th, 2016, https://www.bloomberg.com/features/2016-ev-oil-crisis/

Bloomberg 🕮

Motivation:	Why we	need to	consider	the	waiting	time
000000	0					

Base Planner 000

Considering the Waiting T

Evaluation Conc 00000 0

Comparison between a conventional vehicle and an EV

	Honda Civic	Nissan Leaf
Price (C\$) ³	17 890 \$	42 298 \$
Range	750 km	363 km
Refueling/Charging time	3 min	30 min
Gas/L3 Charging stations ⁴	2924	225

³Starting price for the 2019 model. Excluding governmental subsidies for green vehicles

⁴In Québec province, Canada, in 2018

Champagne Gareau, Beaudry, Makarenkov UQAM EVPP Considering the Waiting Time

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion
0000000				

Research problem

- The number of EV is increasing;
- Many paths need recharges to be feasible.

Objective

The objective is to have an EV planner that:

- considers intermediate recharges at charging stations;
- **2** considers the expected occupancy and waiting time at the stations.

Real world example of the impact of the consideration of waiting time

Monday noon Tuesday noon

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion
0000000				

Related Work

EVRP-MRUA⁵

- EV Routing Problem with Mid-Route Recharging and Uncertain Availability.
- Deliver mulitple packages in an optimal order (similar to the TSP).
- Minimize the cost for the operator and the global time to deliver the packages.

⁵Nicholas Kullman, Justin Goodson, Jorge E. Mendoza. Dynamic Electric Vehicle Routing with Mid-route Recharging and Uncertain Availability. ODYSSEUS 2018, Jun 2018, Cagliari, Italy.

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion
0000000				

Related Work

EVRP-MRUA⁵

- EV Routing Problem with Mid-Route Recharging and Uncertain Availability.
- Deliver mulitple packages in an optimal order (similar to the TSP).
- Minimize the cost for the operator and the global time to deliver the packages.

Adaptive Routing and Recharging Policies for EV⁶

- Single EV going from a departure to an arrival node.
- Considers expected waiting time and EV stations availability uncertainty.
- Availability of EV station assumed to be known only when arriving.
- Every node is a station. Time complexity of $\mathcal{O}(n^4)$.

⁵Nicholas Kullman, Justin Goodson, Jorge E. Mendoza. Dynamic Electric Vehicle Routing with Mid-route Recharging and Uncertain Availability. ODYSSEUS 2018, Jun 2018, Cagliari, Italy.

⁶Timothy M Sweda, Irina S Dolinskaya, and Diego Klabjan. 2017. Adaptive Routing and Recharging Policies for Electric Vehicles. Transportation Science 51, 4 (2017), 1326–1348.

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion
	000			

Formalism

Road Network

The **network** is a tuple (V, E, λ, μ, S), where (V, E) is a digraph. More specifically:

- V is the set of locations considered on the map (nodes);
- E is the set of road segments (edges);
- $\lambda: E \to \mathbb{R}^+$ gives the length (in m) of the edges;
- $\mu: E \to \mathbb{R}^+$ gives the expected speed (in m/s) at the edges;
- S is the set of charging stations (we assume that $S \subseteq V$).

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion
	000			

Formalism

Road Network

The **network** is a tuple (V, E, λ, μ, S), where (V, E) is a digraph. More specifically:

- V is the set of locations considered on the map (nodes);
- E is the set of road segments (edges);
- $\lambda: E \to \mathbb{R}^+$ gives the length (in m) of the edges;
- $\mu: E \to \mathbb{R}^+$ gives the expected speed (in m/s) at the edges;
- S is the set of charging stations (we assume that $S \subseteq V$).

EV Planning Problem (EVPP)

An **EVPP** is defined by a tuple $(M, \rho, \alpha, \omega)$, where

- M is the road map;
- $\rho \in \mathbb{R}^+$ is the EV range;
- $\alpha, \omega \in V$ are the departure and arrival nodes.

Motivation: Why we need to consider the waiting time	Base Planner O●O	Considering the Waiting Time	Evaluation 00000	Conclusion O

EVPP Solution

Solution

A solution to an EVPP $(M, \rho, \alpha, \omega)$ is a tuple (P, Q), where

- \blacksquare *P* \subseteq *V* is the sequence of nodes to traverse in the solution;
- $Q \subseteq P$ contains the stations where to charge (and α, ω);
- $\forall i, dg(Q_i, Q_{i+1}) \leq \rho$, where dg is the graph distance.

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion
	000			

EVPP Solution

Solution

A solution to an EVPP $(M, \rho, \alpha, \omega)$ is a tuple (P, Q), where

- \blacksquare *P* \subseteq *V* is the sequence of nodes to traverse in the solution;
- $Q \subseteq P$ contains the stations where to charge (and α, ω);
- $\forall i, dg(Q_i, Q_{i+1}) \leq \rho$, where dg is the graph distance.

Optimal Solution

An optimal solution is a solution (*P*, *Q*) minimizing:

Z(P, Q) = DT(P) + CT(Q) + WT(Q),

where DT, CT and WT are the expected driving, charging and waiting time.

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion
	000			

Base algorithm

Algorithm Base planner

- 1: Compute the matrix D and the optimal path between every pair of stations
- 2: Construct the s-graph containing every charging station
- 3: for each request (α, ω, ρ) do
- 4: Run Dijkstra from α on the original graph
- 5: Run Dijkstra from ω on the reversed original graph
- 6: Add α and ω to the s-graph and add edges with length $\leq \rho$
- 7: Run the A^{*} algorithm on the s-graph from α to ω to find the sequence Q
- 8: Find the sequence *P* from *Q* using all computed paths
- 9: end for

The time complexity for each request is $O(|V| \log |V| + |E|)$. This planner can be extended to:

- Consider partial initial EV charge;
- Consider the regenerative braking of EVs;
- Consider partial recharge and the non-linear charging curve.

0000000 000 €0 0000 00000 . Granh Balabaling	0
Granh Balahaling	
Circle in the second sec	
The idea	

- Consider historic data of stations occupancy;
- Relabel the graph to account for these data.

A priori known data

For every station *s*, the time-dependent probability of occupancy is given by:

$$f_s: \{Monday, \dots, Sunday\} \times \{0..23\} \rightarrow [0, 1]$$

 $(d, h) \mapsto \mathbb{P}(s \text{ is occupied } | \text{ Day} = d \land \text{ Hour} = h).$

and the time-dependent expected waiting-time when occupied is given by:

 $g_{s} \colon \{\textit{Monday}, \ldots, \textit{Sunday}\} \times \{0..23\} \to \mathbb{R}^{+}$

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion
		00000		
Graph Relabeling				

Time-dependent graph relabeling

Labeling considering the waiting time

Let $e = (u, v) \in E$. We define the time-dependent labeling to be

$$\xi : E \times \{Monday, \dots, Sunday\} \times \{0..23\} \rightarrow \mathbb{R}^+$$

$$\xi(e, d, h) = \begin{cases} \lambda(e) & \text{if } u \notin S \\ \lambda(e) + f_u(d, h) \cdot g_u(d, h) \cdot \mu(e) & \text{if } u \in S \end{cases}$$

- The edge weight now depends on the time of arrival;
- We need to modify the graph search algorithm (e.g., Dijkstra/A*)⁷;

⁷Daniel Delling and Dorothea Wagner. 2009. Time-dependent route planning. In Lecture Notes in Computer Science, Vol. 5868 LNCS. 207–230. https://doi.org/10. 1007/978-3-642-05465-5_8

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion
		00000		
Alternative Paths Generation				

Problem with previous technique

- The previous technique uses only a priori known data;
- Real-time occupancy can be much worse than what was expected;
- Assume we have access to real-time occupancy while driving;
- We can further reduce the waiting time by precomputing alternative paths.

Two extreme cases

- No alternative path;
- **2** A total policy π : State \rightarrow Action (e.g., found using MDP)

We want a compromise between these two extreme cases.

Motivation: Why we need to consider the waiting time	Base Planner 000	Considering the Waiting Time	Evaluation 00000	Conclusion O
Alternative Paths Generation				
The idea				

Generate one alternative path for every station on the initial path.

Motivation: Why we need to consider the waiting time	Base Planner 000	Considering the Waiting Time	Evaluation 00000	Conclusion O
Alternative Paths Generation				
The idea				

Generate one alternative path for every station on the initial path.

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation 00000	Conclusion O
Alternative Paths Generation				
The idea				

Generate one alternative path for every station on the initial path.

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion
		000000		
Alternative Paths Generation				

Generating the alternative paths

Algorithm Alternative path generation for station s_i

- 1: Assume $f_{s_i} \equiv 1$
- 2: Run the relabeled time-dependent planner
- 3: if new path is same as base path then
- 4: return
- 5: end if
- 6: $b_i \leftarrow$ last common node in prefix of new path and base path
- 7: Set the new path as an alternative path on node b_i

After running this algorithm on every station, we obtain a partial policy

$$\pi \colon V \to V^2$$

$$\pi(x) = \begin{cases} (s_{i+1}, -) & \text{if } x = s_i \land \nexists b_{i+1} \\ (b_i, -) & \text{if } x = s_i \land \exists b_{i+1} \\ (s_i, c_{i1}) & \text{if } x = b_i \\ (c_{i,j+1}, -) & \text{if } x = c_{ij}, \end{cases}$$

Motivation: Why we need to consider the waiting time	Base Planner 000	Considering the Waiting Time	Evaluation 00000	Conclusion O
Alternative Paths Generation				
Executing the policy				

Algorithm Online plan execution

1: **procedure** EXECUTEPLAN (π) 2: $n \leftarrow \alpha$ while $n \neq \omega$ do 3. $(x, y) \leftarrow \pi(n)$ 4: if $y = - \lor \neg \text{occupied}(x)$ then 5 6: $n \leftarrow x$ else 7: 8. $n \leftarrow y$ end if 9: Move EV to node n 10. end while 11. 12: end procedure

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion
			00000	

Test methodology

- The real map data come from the OpenStreetMap project.
- The territory used is the Province of Québec, Canada:
 - 2 923 013 nodes
 - 5 907 672 edges
- The charging stations data come from the Circuit Électrique:
 - 1318 charging stations (1178 L2 and 140 L3)
 - the f_s and g_s functions were generated from the data.
- 1000 requests:
 - EV range was generated uniformly between 90 and 550 km;
 - α and ω were chosen at random among all nodes;
 - Travel distance was between 200 and 1500 km.

Motivation:	Why	need	consider	the	waiting	

Results: Table showing the results obtained for real data

Param	neters	Bas	eline	Relabeling		Alternative Paths			
SN	PM	wт	TT	WT	WR	TTR	wт	WR	TTR
		min	min	min	%	min	min	%	min
R140	× 1	10.2	350.1	3.3	-67.5	-6.2	2.2	-78.8	-7.2
R140	× 2	22.7	362.5	6.0	-73.6	-15.5	4.1	-82.0	-17.2
R140	× 3	37.5	377.3	7.7	-79.3	-28.3	7.2	-80.9	-28.7
R140	Rand	51.3	391.2	10.9	-78.7	-38.5	9.8	-80.9	-39.5
R1318	× 1	19.4	356.0	2.2	-88.6	-16.7	1.7	-91.5	-17.3
R1318	× 2	37.5	374.0	4.0	-89.3	-32.8	3.0	-92.0	-33.7
R1318	× 3	50.5	387.1	6.5	-87.1	-43.1	4.7	-90.6	-44.8
R1318	Rand	62.0	398.6	6.9	-88.8	-53.3	6.0	-90.4	-54.2

SN: Station Network; **PM**: Probability Modifier;**TTR**: Total time reduction (vs Baseline)

Champagne Gareau, Beaudry, Makarenkov UQAM

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusio
			00000	

Results: Table showing the results obtained for artificial data

Param	ameters Baseline		Relabeling			Alternative Paths			
SN	PM	WТ	TT	WТ	WR	TTR	WТ	WR	TTR
		min	min	min	%	min	min	%	min
A250	Rand	29.3	368.2	12.0	-59.0	-13.9	10.3	-64.8	-15.1
A500	Rand	28.9	363.4	9.4	-67.6	-16.5	8.3	-71.2	-17.3
A1000	Rand	28.7	362.5	7.4	-74.2	-18.7	6.5	-77.3	-19.4
A2000	Rand	27.1	359.9	4.9	-81.9	-19.9	3.8	-86.0	-20.9

SN: Station Network; PM: Probability Modifier; TTR: Total time reduction (vs Baseline)

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion
			00000	

Results: Box plots showing the five number summary of the total time

B: Baseline; R: Relabeling; A: Alternative paths.

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation	Conclusion
			00000	

Results: Box plots showing the five number summary of the total time

B: Baseline; R: Relabeling; A: Alternative paths.

Motivation: Why we need to consider the waiting time	Base Planner	Considering the Waiting Time	Evaluation 00000	Conclusion
Conclusion				

- The waiting time can have a significant impact in EV planning.
- We proposed two techniques:
 - a dynamic time-dependent graph relabeling;
 - an alternative path generation mechanism to account for worse than expected occupancy.
- Both techniques have a negligible computation overhead over the base planner.
- Our techniques decreased by more than 3/4 the waiting time in our simulations, representing a 17.3 minutes saving on average.

Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC) and the Fonds de recherche du Québec — Nature et technologies (FRQNT).