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Abstract Markov Decision Processes (MDPs) are often used in Artificial Intelligence
to solve probabilistic sequential decision-making problems. In the last decades, many
probabilistic planning algorithms have been developed to solve MDPs. However, the
lack of standardized benchmarks makes it difficult to compare the performance of
these algorithms in different contexts. In this paper, we identify important topological
properties of MDPs that can make a significant impact on the relative performance
of probabilistic planning algorithms. We also propose a new approach to generate
synthetic MDP domains having different topological properties. This approach relies
on the connection between MDPs and graphs and allows every graph generation
technique to be used to generate synthetic MDP domains.
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Jaël Champagne Gareau✉
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1 Introduction

In Artificial Intelligence, problems of sequential decision-making under uncertainty
are often modeled using Markov Decision Processes (MDPs). In the last decades,
many new probabilistic planning algorithms have been developed to find optimal
solutions for MDP instances. Some of these algorithms are especially good in spe-
cific contexts, when, for example, the MDP of interest contains a large number of
Strongly Connected Components (SCCs) in its transition graph or when there exists
a trajectory to a goal state using a small number of actions [5].

Usually, new planning algorithms intended to solve MDPs proposed in the litera-
ture are evaluated on a small number of carefully designed domains to demonstrate
their efficiency. However, the lack of standardized benchmarks makes it difficult to
compare the performance of these algorithms in different contexts. For example, we
know that some algorithms (e.g., Topological Value Iteration [5]) are good for solv-
ing MDPs with a large number of SCCs, whereas others (e.g., Labeled Real-Time
Dynamic Programming [4]) are better for solving MDPs containing a large number
of goal states inside its state space. However, we do not know a priori which of these
algorithms is better for solving MDPs that have both a large number of SCCs and a
large number of goal states. Since there are no currently existing benchmarks that
contain MDPs with both of these properties, it is difficult to know which algorithm
will be the most efficient in this context.

The domains that are the closest to standardized domains for probabilistic plan-
ning algorithms are those used in the International Planning Competition, which is
organized in the context of the International Conference on Automated Planning and
Scheduling (ICAPS) [11]. Even though a few planning domains have been added
during the last occurence of the competition, their total number is still relatively
small and does not cover the entire range of combination of topological properties
one might be interested in. Moreover, the domains used in the competition are mostly
designed to evaluate finite horizon MDPs and infinite horizon discounted MDPs,
whereas in this research, we are mostly interested in domains related to Stochas-
tic Shortest Path MDPs (SSP-MDPs). The lacking of standardized benchmarks for
SSP-MDPs as been highlighted as an important issue in the literature:

[M]ore theory is needed to guide the development and selection of such enhancements.
The most useful would be problem features and optimality definitions that would indicate
which metric, reordering method and partitionning scheme are maximally effective, and
which would guide the development of new enhancements. These may include distribu-
tional properties of the reward functions, distributional properties of transition matrices,
strongly/weakly connected component analyses, etc. [13]

SSP-MDPs are known to be more general than other common types of MDPs [3].
They can be viewed as a generalization of the problem of finding a shortest path
in a graph with probabilistic transitions. More formally, an SSP-MDP is defined as
a tuple (𝑆, 𝐴,𝑇,𝐶,𝐺), where 𝑆 is a finite set of states, 𝐴 is a finite set of actions,
𝑇 : 𝑆 × 𝐴× 𝑆 → [0,1] is a transition function, 𝐶 : 𝑆 × 𝐴→ R+ is a cost function
and 𝐺 ⊆ 𝑆 is a set of goal states. The objective is to find a policy 𝜋 : 𝑆→ 𝐴 that
minimizes the expected cost of reaching a goal when starting from any state in 𝑆.
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Our main contributions in this paper are as follows:

• We provide a list of topological properties that we deem important to estimate
the performance of probabilistic planning algorithms on SSP-MDPs.

• We propose a new approach to generate synthetic SSP-MDPs that can cover
different topological properties of interest.

2 Topological Properties

In this section, we present a list of topological properties of MDPs, some of them are
similar to graph properties, while the other are unique to MDPs. We believe that most
of them can have a significant impact on the relative performance of probabilistic
planning algorithms. Some of these properties can also be given as parameters to
the synthetic MDP generation process we will describe in the next section. The list
of properties, or model parameters, we propose is as follows:

• The number of states |𝑆 | in the MDP.
• The number of actions |𝐴| in the MDP.
• The number of goal states |𝐺 | in the MDP.
• The number of Strongly Connected Components (SCCs) |𝔖| in the MDP.
• The number of states in the largest SCC maxS∈𝔖 |S|.
• The distribution of actions: ∀𝑘, 𝑃𝑎

𝑘
:= proportion of states which have 𝑘 appli-

cable actions.
• The distribution of probabilistic transitions: ∀𝑘, 𝑃𝑡

𝑘
:= proportion of actions

which have 𝑘 probabilistic transitions.
• The clustering coefficient: ℭ := 1

|𝑆 |
∑

𝑠∈𝑆
𝑒𝑠

𝑘𝑠 (𝑘𝑠−1) , where 𝑒𝑠 is the number of
pairs of states directly reachable from 𝑠 that are also directly reachable from each
other, and 𝑘𝑠 is the number of states directly reachable from 𝑠. Moreover, ℭ is set
to be 0 when 𝑘𝑠 < 2.

• The goals-eccentricity of the MDP: G := min𝑔∈𝐺 max𝑠∈𝑆 𝑑 (𝑠, 𝑔), where 𝑑 (𝑠, 𝑔)
is the minimum number of actions (the cost of each action is not considered) that
must be executed to reach 𝑔 from 𝑠.

We explain these properties more precisely through the following example.
The MDP in Figure 1 (top) contains 6 states, 7 actions, 1 goal state (𝑠𝑔) and
3 SCCs, {{𝑠0}, {𝑠1, 𝑠2, 𝑠3, 𝑠4}, {𝑠𝑔}}. The largest SCC contains 4 states. More-
over, the distribution of actions is given by Pa = [ 16 ,

3
6 ,

2
6 ] and the distribution of

probabilistic transitions is given by Pt = [0, 4
7 ,

2
7 ,

1
7 ]. The clustering coefficient is

ℭ = 1
6 (

2
2·1 +0+ 0

2·1 +
3

3·2 +0+0) = 1
4 and the goals-eccentricity is G = 3, since it takes

at least 3 actions to reach 𝑠𝑔 from 𝑠0.
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3 Synthetic Domain Generation

Some existing MDP planning domains are synthetic, in the sense that they are not
directly mapped into a real-world domain, but are designed to measure how the
change in one particular topological aspect of the MDP can affect the relative perfor-
mance of existing MDP planners. For example, the Layered [5] and the Chained [8]
domains were designed specifically to measure, respectively, the impact of the num-
ber of SCCs and the impact of their relative placement in “independent chains” of
SCCs on the performance of several planning algorithms. However, these domains
are limited in the sense that they only cover a small subset of possible combinations
of topological properties we would like to compare. Moreover, the process of de-
signing synthetic domains is time-consuming. Therefore, in this section, we propose
to leverage the connection between MDPs and graphs to generate synthetic MDPs
using existing graph generation techniques.

Our synthetic MDP generation technique is inspired by the concept of all-
outcomes determinization. It consists in finding a graph from an MDP, where there
is an arc for every possible outcome of each action. MDP determinization was origi-
nally proposed as a way to solve MDPs using deterministic planning algorithms [14].
Figure 1 shows an example of such a determinization.
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Fig. 1 An MDP (top) and the graph corresponding to its all-outcomes determinization (bottom).
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The graph resulting from a determinization can also be used to find and analyze
topological properties of the original MDP. For example, the clustering coefficient
of an MDP, as defined above, is equivalent to the clustering coefficient of its corre-
sponding graph. Other topological properties, such as the number of SCCs, are also
equivalent in the MDP and in its corresponding graph. However, some properties,
such as the distribution of probabilistic transitions, have no equivalence in graph
theory and must be computed directly from the MDP.

MDP determinization allows us to generate a graph from an MDP. The key idea
behind our proposed synthetic MDP generation technique is to reverse this process
by generating an MDP from a graph. This allows us to use existing graph generation
techniques to create synthetic MDPs. We can then use the graph properties to
control some of the topological properties of the generated MDPs. Table 1 shows
some examples of graph generation techniques and their respective properties.

Table 1 Examples of graph generation techniques and their respective properties, where �̄� is the
average degree of the nodes in the graph, and 𝑛 is the number of nodes.

Technique Ref. Degrees Distr. Clust. Coeff. Diameter

Erd o s-Rényi [6] Binomial small (�̄�/𝑛) small: O(log(𝑛) )
Watts-Strogatz [12] Almost-constant large small
Barabási–Albert [1] Scale–free (�̄�−3) large (�̄�−1) small: O( log(𝑛)

log(log(𝑛) ) )
Kronecker [10] Multinomial flexible flexible

Our approach starts by generating a graph using one of the techniques presented
in Table 1. The choice of the technique depends on the desired topological properties
of the MDP. For example, if we want to generate an MDP with a small clustering
coefficient, we can use the Erdös-Rényi model. The second step is to use this graph
as a base for generating the MDP. For every state 𝑠 in the MDP (which corresponds
to a node in the graph), we generate 𝑎𝑠 actions, where 𝑎𝑠 is a random number ranging
between 1 and the degree 𝑘𝑠 of the node 𝑠 in the graph. We then generate an array
which consists of 𝑎𝑠 random numbers such that their sum is equal to 𝑘𝑠 . For example,
if a given node has a degree of 8, and the random number of actions is 3, a possible
array could be [4,1,3]. This array represents the number of states that can be reached
by applying each of the actions. The next step consists in generating a cost for each
action (any distribution can be used here), a probability for each possible transition
(normalized to 1) and a state corresponding to each possible probabilistic transition
of each action (among all neighbors of the node in the graph). Finally, the goal states
are chosen among the set of states. Algorithm 1 shows the main steps of the proposed
approach.

Algorithm 1 and the four graph generation techniques presented in Table 1 have
been implemented in C++. The resulting graph library as well as an accompanying
program (which can analyze and generate synthetic graphs and corresponding syn-
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Algorithm 1 Synthetic MDP Generation
Require: A list of desired topo. prop. (e.g., 𝑛: number of states; 𝑘: number of goals, etc.)
Ensure: An MDP (𝑆, 𝐴,𝑇,𝐶,𝐺) ⊲ Use the most appropriate graph gen. technique relative to

the desired topological properties
1: Γ← GenerateSyntheticGraph(𝑛) ⊲ e.g., using one of the techniques in Table 1
2: 𝑆← Γ.getStates ⊲ |𝑆 | = 𝑛

3:
4: for all 𝑠 ∈ 𝑆 do
5: 𝑎𝑠← RandomInt(1, 𝑘𝑠 ) ⊲ Generate the number of actions; 𝑘𝑠 is the degree of 𝑠
6: 𝐴𝑠← DecompIntoSum(𝑘𝑠 , 𝑎𝑠 ) ⊲ 𝐴𝑠 is an array of 𝑎𝑠 elements s.t.

∑
𝑛𝑎∈𝐴𝑠

𝑛𝑎 = 𝑘𝑠
7: for all 𝑛𝑎 ∈ 𝐴𝑠 do ⊲ 𝑛𝑎 is the number of possible transitions of the current action
8: 𝑎← new action identifier
9: 𝐴← 𝐴∪ {𝑎}

10: 𝐶 (𝑠, 𝑎) ← RandomCost ⊲ Can be sampled uniformly or with another distribution
11: 𝑃𝑎← GenProbabilities(𝑛𝑎 ) ⊲ 𝑃𝑎 is an array s.t.

∑
𝑝∈𝑃𝑎

𝑝 = 1.0 and |𝑃𝑎 | = 𝑛𝑎

12: for all 𝑖 ∈ [1..𝑛𝑎 ] do
13: 𝑠′← RandomNeighbor(Γ, 𝑠) ⊲ Random neighbor of 𝑠 in the graph Γ

14: 𝑇 (𝑠, 𝑎, 𝑠′ ) ← 𝑃𝑎 [𝑖 ]
15: 𝐺← RandomSubset(𝑆, 𝑘 ) ⊲ 𝑘 is a parameter to control the number of goal states
16: return (𝑆, 𝐴,𝑇,𝐶,𝐺)

thetic MDPs) is available publicly on GitLab1. Figures 2 and 3 show an example of
a synthetic graph generated using the Erdös-Rényi model (𝑛 = 10 and 𝑚 = 15), and
the corresponding synthetic MDP generated using Algorithm 1.

Our algorithm has the advantage of being simple to implement, fast to execute and
flexible. It can be used to generate a wide variety of synthetic MDPs. One weakness
of our approach is that the choice of the underlying graph generation technique
must currently be done manually by the user. We would like to eventually develop
a method to automatically select the most appropriate graph generation technique
based on the desired topological properties of the MDP.

4 Conclusion

In this paper, we have identified important topological properties of MDPs that can
make a significant impact in the performance of probabilistic planning algorithms.
We have also proposed a new approach to generate synthetic MDPs having different
topological properties. This approach relies on the connection between MDPs and
graphs and allows any graph generation technique to be used as a basis to generate
synthetic MDPs. We believe that this approach will allow one to generate a wide
variety of synthetic MDPs, which will be useful to compare the performance of
probabilistic planning algorithms in different practical contexts. As future work, we
plan to generate a wide range of synthetic MDPs using this approach and evaluate the
performance of existing probabilistic planning algorithms applied to these MDPs.

1 https://gitlab.info.uqam.ca/champagne gareau.jael/graph-toolkit
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Using these results, we plan on training a classification model, where the input will
be the topological properties of the MDP and the output will be the most efficient
algorithm to solve it. Using this classifier, we will be able to predict the most efficient
algorithm to solve a given MDP based on its topological properties.
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Fig. 2 Example of a synthetic graph generated using the ErdÃ¶s-Rényi model with 𝑛 = 10 and
𝑀 = 15. The graph was generated using our graph-toolkit C++ library.
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