
A Fast Electric Vehicle Planner Using
Clustering

Jaël Champagne Gareau, Éric Beaudry, and Vladimir Makarenkov

Abstract Over the past few years, several studies have considered the problem of
Electric Vehicle Path Planning with intermediate recharge (EVPP-R) that consists
of finding the shortest path between two given points by traveling through one or
many charging stations, without exceeding the vehicle’s range. Unfortunately, the
exact solution to this problem has a high computational cost. Therefore, speedup
techniques are generally necessary (e.g., contraction hierarchies). In this paper, we
propose and evaluate a new fast and intuitive graph clustering technique, which is
applied on a real map with charging station data. We show that by grouping nearby
stations, we can reduce the number of stations considered by a factor of 13 and
increase the speed of computation by a factor of 35, while having a very limited
trade-off increase, of less than 1%, on the average journey duration time.

Keywords Electric vehicles · Charging stations · Planning · Clustering · Graphs

1 Introduction

Electric vehicles (EVs) are an attractive alternative to fossil-fuel vehicles to reduce
air pollution. However, their limited range and their high-charging time represent a
major obstacle to their massive adoption Smart and Schey (2012). Moreover, long
journeys require careful planning to determine the charging stations to be used in
order to avoid running out of energy. For example, an average EV currently has a
range of around 250km and needs to make many recharging stops on long journeys.

J. Champagne Gareau (B) · É. Beaudry · V. Makarenkov
Université du Québec á Montréal, P.O. Box 8888, H3C 3P8, QC, Montréal, Canada
e-mail: champagne_gareau.jael@courrier.uqam.ca

É. Beaudry
e-mail: beaudry.eric@uqam.ca

V. Makarenkov
e-mail: makarenkov.vladimir@uqam.ca

© Springer Nature Switzerland AG 2021
T. Chadjipadelis et al. (eds.), Data Analysis and Rationality in a Complex World,
Studies in Classification, Data Analysis, and Knowledge Organization,
https://doi.org/10.1007/978-3-030-60104-1_3

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60104-1_3&domain=pdf
mailto:champagne_gareau.jael@courrier.uqam.ca
mailto:beaudry.eric@uqam.ca
mailto:makarenkov.vladimir@uqam.ca
https://doi.org/10.1007/978-3-030-60104-1_3

18 J. Champagne Gareau et al.

EV path planning with intermediate recharges (EVPP-R) is a complex problem
which cannot be effectively solved by conventional approaches because one needs
to consider not only the different variables applicable to conventional vehicles (the
wind, the energy needed to fight the air resistance relative to the speed, the traffic,
eventual detours, etc.), but also aspects specific to EVs, such as the level of charging
stations (which influences the charging speed), the non-linearity of the charging
curve of the battery, the topography of the map (EVs can recover some energy when
moving downhill) as well as the expected waiting time at the charging station.

In addition to these considerations, a non-negligible characteristic of a good EV
planner is its running time. Many well-known techniques are commonly used to
accelerate the graph search, including graph contraction hierarchies (Geisberger et al.
2012) and various search heuristics. However, no one has yet tried to decrease the
journey computation time by using clustering techniques in order to decrease the
number of nodes considered in the graph. The main contributions of our paper are
as follows:

• a fast and intuitive clustering technique to solve the EVPP-R problem;
• evaluation of the proposed technique on real data to assess its performance.

An EV planning framework that takes into account the fact that the EV recharges
itself during a journey (by using regenerative braking) already exists (Sachenbacher
2011). However, it does not take into account the possibility of using charging sta-
tions to charge the EV battery midway. The algorithm used in Sachenbacher (2011)
is a variant of A* (Hart et al. 1968), called Energy-A*. This method allows one to
find a solution in O(n log n), where n is the number of nodes of the graph. Tech-
niques that tackle the problem of midway charging have also been proposed. Some
of them consider the problem of a single EV path planning (what we call EVPP-R),
while others consider the problem of an EV fleet routing (EVRP). In this article, we
focus on the former. The two main approaches which have been used to solve the
EVPP-R problem are Dijkstra/A*-based (Baouche et al. 2014, Champagne Gareau
2018), or dynamic programming/MDP-based (Sweda and Klabjan 2012) algorithms.
While these techniques try to minimize the sum of the travel time and charging time,
some new techniques also consider the expected waiting time (Champagne Gareau
2019). The majority of Dijkstra/A*-based techniques use heuristic graph searches
as well as contraction hierarchies (Geisberger et al. 2012) in order to accelerate the
computations. In this paper, we show that clustering is another way to speedup the
computation (that can be combined with the other speedup techniques).

2 Problem Formulation and Base Planner

We begin by presenting how we model the problem, including the road network
representation, the problem definition, and what we consider an optimal solution.

A Fast Electric Vehicle Planner … 19

Definition 3.1 A road network M is modeled by a tuple (V, E, λ, σ, S), where
(V, E) is a digraph and λ, σ are two labelings of the edges. More specifically:

• V is the set of nodes (latitude, longitude) on the map;
• E is the set of road segments (edges);
• λ : E → R

+ gives the length (in m) at every edge;
• σ : E → R

+ gives the expected speed (in m/s) at every edge;
• S is the set of all charging stations.

Every charging station s ∈ S is associated to the nearest vertex vs ∈ V . Theσ labeling
can be based on empirical data of the mean speed on every edge, or can simply be
the maximum allowed speed of each road segment.

Definition 3.2 An EVPP-R problem is defined by the tuple (M, ρ, α, ω), where

• M is the road network;
• ρ ∈ R

+ is the range of the EV;
• α and ω are the points of departure and arrival.

Remark 3.1 We assume that α,ω ∈ V . If it is not the case, a KD-Tree can simply
be used to find the nearest corresponding nodes in the graph.

Definition 3.3 A solution of an EVPP-R problem (M, ρ, α, ω) is a tuple (P, Q),
where

• P is a finite sequence (Pi)
k
i=0 (where Pi ∈ V);

• Q is a subsequence (Pi j)
b+1
j=0

of P containing the Pi ’s where a station is used;
• Pi0 = P0 = α and Pib+1 = Pk = ω;
• ∀ j ∈ {0, 1, . . . , b}, d(Pi j , Pi j+1)

1 ≤ ρ.

In other words, P is the sequence of nodes that the EV needs to travel by according
to the solution, and Q is a subsequence of P containing the charging stations that
need to be used in the journey (as well as α and ω). Our objective is to find a solution
that minimizes the total time of the journey, including the travel time and the charging
time (we don’t consider the waiting time, but the planner can easily be modified to
consider it as well (Champagne Gareau 2019; Sweda et al. 2017)). This is formalized
in the next definition.

Definition 3.4 An optimal solution to an EVPP-R is a solution (P, Q), as stated in
Definition 3.3,whichminimizes the objective functionZ(P, Q) = TT(P) + CT(Q),
where TT is the expected travel time and CT is the expected charging time:

TT(P) =
k−1∑

i=0

λ(Pi , Pi+1)

σ (Pi , Pi+1)
and CT(Q) =

b∑

i=1

ST(Qi).

ST(Qi) is the charging time when considering Qi ’s state of charge and level.

1d(A, B) is the distance in the graph between A and B.

20 J. Champagne Gareau et al.

We now present our baseline planner. First, the distance between each pair of
stations is pre-computed and stored in a matrix D = (Di j), where Di j = d(Si , Sj).
We also store the optimal path between each of them. We then build a simplified
graph (s-graph) (V ′, E ′) containing the nodes associated with the stations and the
edges with weights corresponding to the pre-computed distances between every pair
of stations. For every request (α, ω, ρ), we temporarily add α and ω to the s-graph
and use Dijkstra’s algorithm twice (from α, and from ω on the reversed graph) to add
edges from α to every station and from each station to ω. The computations for this
step can be accelerated by using contraction hierarchies. The new graph obtained is
a complete graph, from which we remove every edge whose length is larger than ρ.
We then execute the A* algorithm on this new graph (using the great-circle distance
as heuristic) from α to ω, which is enough to get a sequence Q, as specified in
Definition 3.3. This sequence satisfies the last part of Definition 3.3 insofar as every
intermediary node is a charging station. Consequently, there is no need to consider
the range of the vehicle at this point. The sequence P can then be found from Q
using the previously computed paths.

The base planner has a time complexity of O(|V | log |V | + |E |), equivalent to
Dijkstra’s algorithm’s complexity. In a real road network, the maximum number of
intersections at a given node is bounded by a small constant (i.e., |E | ∈ O(|V |)). This
implies that we can simplify the time complexity of the algorithm toO(|V | log |V |).
In the next section, we show how to improve the aforementioned algorithm by clus-
tering the charging stations before creating the s-graph.

3 Clustering

To implement a faster EV planning algorithm, we propose to cluster the stations. We
introduce the parameter dmax ∈ R

+ corresponding to the maximal distance between
the center of a cluster and the stations it contains. We then create the clusters as
described in Algorithm 1, which has the time complexity of O(K (|S|2 + |V |)),
where K , |S| and |V | are, respectively, the number of clusters, stations and nodes
in the graph. |S|2 is currently small compared to |V |, but is expected to grow in the
future.

Algorithm 1 Fast charging stations clustering
1: Find the two nearest charging stations s1, s2 ∈ S � using the pre-computed matrix
2: while d(s1, s2) ≤ dmax do
3: Find the midway node m ∈ V between s1 and s2 � using Dijkstra from s1 to s2
4: Find C = {s ∈ S|dist (s,m) ≤ dmax} � using Dijkstra from m
5: S ← (S \ C) ∪ {m} � m is the representative of the new cluster
6: Find the two nearest charging stations s1, s2 ∈ S

A Fast Electric Vehicle Planner … 21

Fig. 1 The distance between
clusters B and C is equal to
the range ρ. To reach C1 or
C2 from B1 or B2, one needs
to travel ρ + 2dmax km. Alas,
the planner will consider
only the distance between
the centers B and C

When we use the base planner described previously along with the clustering,
some previously feasible paths may become unfeasible because the new itinerary
will always pass through a cluster’s center before reaching one of its stations. To
solve this problem, the range considered by the algorithm needs to be modified.
Figure 1 gives an instance of this problem, and Proposition 3.1 gives the solution.

Proposition 3.1 Let ρ be the true range of the EV and ρ ′ be the range considered by
the planner. To always have a feasible plan, ρ ′ needs to be set to ρ − dmax between α

and the first traversed cluster, and between the last traversed cluster and ω. Between
pairs of clusters, it needs to be set to ρ − 2dmax.

Proof Let {c1, . . . , ck} be the traversed clusters in the path from α to ω returned by
the planner. The path from α to c1 is less than or equal to ρ ′. Since c1 is the center of a
cluster2 and the stations have at most a distance of dmax from the center, the range of
the EV needs to be ρ = ρ ′ + dmax, so the considered range must be ρ ′ = ρ − dmax.
The same argument applies to the segment of the plan between the last cluster used
and the arrival point. Similarly, for the path between si ∈ ci and si+1 ∈ ci+1, we have

d(si , si+1) ≤ d(si , ci) + d(ci , ci+1) + d(ci+1, si+1) ≤ dmax + ρ ′ + dmax

In some cases (e.g., Fig. 1) we have equality, so the bound is tight. �

Proposition 3.1 presents the theoretical worst case. However, in the implementa-
tion, it is possible to consider the radius ri of every cluster ci (the maximal distance
between the center and a station inside it). The range ρ ′ that needs to be considered
between pairs of clusters (ci , c j) can then be set to ρ ′ = ρ − ri − r j ≤ ρ − 2dmax.

The new range ρ ′ can make some previously feasible paths not found by the
planner. While at first it may seem to be an unacceptable compromise, a simple
solution is to compute the journey using clustering, and if the journey is not found
because of the new range, recompute the journeywithout clustering. In the evaluation
of our technique, we call this strategy the amortized version of our planner.

Algorithm 2 shows how the different steps fit together in the complete planner.
Note that another version of the problem starts with the s-graph given as input, in
which case lines 3, 5, and 10 can be omitted. Nevertheless, even when the s-graph

2For the sake of simplicity, ci denotes both the set of stations in the cluster and the center node.

22 J. Champagne Gareau et al.

Algorithm 2 Complete planner algorithm
1: Compute the matrix D and the optimal path between every pair of stations
2: Compute the clusters using Algorithm 1
3: Construct the s-graph containing the representative of each cluster
4: for all request (α, ω, ρ) do
5: Run Dijkstra’s algorithm from α (on the original graph) and ω (on the reversed graph)
6: Add α and ω to the s-graph and add edges with length ≤ ρ

7: Run the A* algorithm on the s-graph from α to ω to find the sequence Q
8: if the path is infeasible then � When we use the amortized strategy
9: Run A* on the s-graph (without clustering)
10: Find the sequence P from Q using the already computed paths

needs to be constructed, line 5 is done in the original graph, so the time complexity
of this step is not affected by the clustering (but can be accelerated using contraction
hierarchies). Furthermore, lines 6 and 10 have a negligible time compared to the
others. Therefore, we focus on the time complexity of lines 7–9 in the evaluation.

Whenwe use clustering (dmax > 0), we can compute P (Line 10) as in the previous
section. Note, however, that Q now contains the clusters that the EVwill pass through
on its journey (instead of containing raw stations), but gives no information about
which station to select inside the cluster. This choice is made at runtime (i.e., a
short time before the vehicle arrives at a decision point before the cluster) rather than
during the initial planning. Therefore, clustering gives the opportunity of considering
real-time data (e.g., road conditions, charging stations occupancy state, etc.) to select
the most suitable station inside the next cluster on the path.

4 Empirical Evaluation

Our algorithm was evaluated using real data from the Province of Québec, Canada.
The map data (i.e., the nodes and the road segments) were extracted from the Open-
StreetMap project. We chose this map in our tests because the territory is vast, the
journeys between pairs of cities can be very long and the network of stations is
relatively well developed. The graph we generated from these data had 2 923 013
vertices and 5 907 672 edges. The stations considered in our tests were real stations
from this territory. Our dataset included 1162 charging stations (Level 2 and 3). We
considered all stations in the data as if they were Level 3 because EV planners are
primarily used for a long itinerary where fast charging is a must and there were not
enough Level 3 stations in the dataset to test our algorithm adequately (only 122).

To evaluate ourmethod, we generated 1000 requests consisting of the departure α,
arrival ω (both chosen at random in the graph) and EV range ρ (generated uniformly
between 90 and 550km, based on the most common EV ranges available on the
market). The optimal solution length ranged from 150 to 1000km. Every generated
request required at least one stop at a station for the EV to be able to reach the
destination. Our tests consisted of running these 1000 requests by our planner on

A Fast Electric Vehicle Planner … 23

Table 1 Empirical results obtained for 1162 real stations in Québec (Canada)

Problem Param. Clust. Param. Base version Amortized version

dmax C JDIR FR CPU FR CPU

km # % % ms % ms

0.0 1162 0.0 0.0 26.56 0.0 26.56

2.5 487 0.0 0.0 3.385 0.0 3.385

5.0 342 0.2 0.4 1.541 0.0 1.647

10.0 236 0.2 0.8 0.588 0.0 0.801

15.0 188 0.6 0.9 0.523 0.0 0.762

20.0 150 1.0 1.4 0.382 0.0 0.754

30.0 111 2.3 2.0 0.265 0.0 0.796

40.0 87 2.8 8.2 0.226 0.0 2.404

Fig. 2 Mean CPU time for different density of stations using amortized strategy

an Intel Core i5 7600k processor. We compared the results obtained with different
combinations of parameters: different subsets of stations (20, 40, 60, 80, or 100%
of the total) to measure the effect of stations density on clustering, and different
values of the parameter dmax (0, 2.5, 5, 10, 15, 20, 30, and 40km). For the sake
of simplicity, it was assumed in the tests that σ(e) = 90km/h for all e ∈ E and that
ST (s) = 30 min for all s ∈ S since it doesn’t influence the clustering efficiency.

Table 1 presents the results obtained by running the tests described previously.
The columns denote, respectively, the parameter dmax, the number of clusters (C),
the Journey Duration Increase Rate (JDIR), the journey Failure Rate (FR), and
the average computation time (CPU) (with and without amortized strategy). When
considering the columns dmax and C, we observe that even a small value of dmax

reduces drastically the number of clusters (since they are merged). The percentage
of remaining stations decreased from 58.1% (with the smallest dmax) to 92.5%.

24 J. Champagne Gareau et al.

When using the amortized strategy, the majority of the performance improvement
is preserved, while eliminating the infeasible paths (as can be seen by comparing the
two pairs of columns (FR, CPU) and by looking at Fig. 2). Column JDIR shows that
the use of our clustering technique can slightly increase the duration of the journeys
returned by the planner. The running time increase is proportional to dmax.

Finally, by comparing the different curves in Fig. 2, we can conclude that when
the number of stations is larger (i.e., the density of stations on the map is higher),
the decrease in the running time due to clustering is also larger. Thus the usefulness
of our clustering technique will increase while more stations are getting installed.
Our results suggest (when considering the columns JDIR and CPU (Amortized)) that
the optimal dmax value for our dataset is between 15 and 20km. A larger value of
dmax results in an increase of more than 1% of the average journey duration and an
increase in the failure rate which is large enough to mitigate the time saving (i.e., the
CPU time starts to increase when dmax becomes larger than 20).

5 Conclusion

In this paper, we proposed to use a fast graph clustering technique to reduce the
running time of a planner solving the EVPP-R problem. Our results show that clus-
tering of charging stations allows for a factor 13 decrease in the number of stations to
be considered, and a factor 35 decrease in the running time in the simplified graph,
while having no decrease in the number of feasible journeys (with the amortized
strategy). The main advantages of our technique are its simplicity, intuitiveness and
computational efficiency, whereas its main disadvantage is a limited trade-off of 1%
increase to the average journey duration time. As future work, we plan to investigate
if the use of traditional graph clustering techniques such as MCL and k-medoids
on graph spectral embeddings, which are slower than the proposed algorithm, could
improve some of our results.

Acknowledgements This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and by the Fonds de recherche du Québec—Nature et technologies
(FRQNT).

References

Baouche, F., Billot, R., Trigui, R., El Faouzi, N.E.: Electric vehicle green routing with possible
en-route recharging. In: International Conference on Intelligent Transportation Systems (ITSC),
pp. 2787–2792 (2014)

Champagne Gareau, J., Beaudry, É., Makarenkov, V.: Planification d’itinéraires quasi-optimaux
pour un véhicule électrique en considérant le regroupement de bornes de recharge et leur prob-
abilité d’occupation. In: XXV-émes Rencontres de la Société Francophone de Classification
(SFC2018), pp. 5–8. Paris, France (2018)

A Fast Electric Vehicle Planner … 25

Champagne Gareau, J., Beaudry, É., Makarenkov, V.: An efficient electric vehicle path-planner
that considers the waiting time. In: Proceedings of the 27th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM, Chicago, United States
(2019)

Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact routing in large road networks using
contraction hierarchies. Transport. Sci. 46(3), 388–404 (2012)

Hart, P., Nilsson, N., Bertram, R.: A formal basis for the heuristic determination of minimum cost
paths. IEEE Trans. Syst. Man Cybern. A. Syst. Humans - TSMCA 4(2), 100–107 (1968)

Sachenbacher, M., Leucker, M., Artmeier, A., Haselmayr, J.: Efficient energy-optimal routing for
electric vehicles. In: Proceedings of theAssociation for theAdvancement ofArtificial Intelligence
(AAAI), pp. 1402–1407 (2011)

Smart, J., Schey, S.: Battery electric vehicle driving and charging behavior observed early in the
EV project. In: SAE Technical Papers, pp. 27–33 (2012)

Sweda, T.M., Dolinskaya, I.S., Klabjan, D.: Adaptive routing and recharging policies for electric
vehicles. Transport. Sci. 51(4), 1326–1348 (2017)

Sweda, T.M., Klabjan, D.: Finding minimum-cost paths for electric vehicles. In: IEEE International
Electric Vehicle Conference (IEVC), pp. 1–4 (2012)

