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Abstract

The Cooperative Electric Vehicles Planning Problem
(CEVPP) has recently been proposed as a multi-agent variant
of the Electric Vehicle Path-Planning Problem (EVPP). It
consists in finding a set of paths for a fleet of electric vehicles
that minimizes the global plan execution time, including the
time spent waiting at the charging stations. In the proposed
formulation, new Electric Vehicles (EVs) can join the fleet at
any time, and a centralized planner recomputes the optimal
plan every now and then to take them into account. However,
the newly computed plans of EVs that were already on the
road can change drastically, compared to their previous
plans. In this paper, we propose an extension of CEVPP that
considers the plan stability in the objective function as a way
to reduce cognitive load on the human drivers. The results
of our experiments, conducted with real road networks and
charging stations, indicate that our approach can significantly
reduce the variability of the optimal plans, while keeping low
the global plan execution time.

1 Introduction
The Electric Vehicle Path-Planning Problem (EVPP) con-
sists in finding a path for an electric vehicle (EV) that
minimizes the time spent on the road (Sachenbacher et al.
2011; Baum et al. 2015). Some variants of the prob-
lem also consider the time spent waiting at the charging
stations (Sweda, Dolinskaya, and Klabjan 2017; Cham-
pagne Gareau, Beaudry, and Makarenkov 2019). Many
methods have been proposed to solve this problem effi-
ciently when each EV is considered independently. How-
ever, when multiple EVs are considered as a whole, the prob-
lem becomes significantly more complex, as the plans of the
EVs can interfere with each other (e.g., many EVs may end
up waiting at the same charging station at the same time).

A multi-agent variant of EVPP, called the Cooperative
Electric Vehicles Planning Problem (CEVPP), has recently
been proposed (Champagne Gareau et al. 2024). It consists
in finding a set of paths for a fleet of electric vehicles that
minimizes the global plan execution time, including the time
spent on the road as well as the time spent charging and wait-
ing at the charging stations. In the proposed formulation,
new EVs can join the fleet at any time, and a centralized
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planner recomputes the optimal plan with respect to a speci-
fied rule (e.g., every time a pre-specified number of new EVs
join the fleet or after a predefined time interval) to take into
account the new EVs in the system. However, after such a
replanning, the newly computed plans of EVs that had been
already on the road can change drastically.

In this paper, we propose an extension of CEVPP which
takes into account the plan stability (Fox et al. 2006; Babli,
Sapena, and Onaindia 2023) in the objective function. We
define a stability metric in the context of multi-agent plan-
ning problems. This new metric allows one to reduce the
variability of the plans, thus increasing the predictability of
the system and making it easier for the agents to coordi-
nate their actions. In the context of CEVPP, considering the
plan stability can be particularly important for the human
EV drivers, who might prefer a better steadiness in planning
their activities in order to reduce the cognitive load associ-
ated to last-minute changes. For example, a driver could plan
to stop at a specific location, such as a restaurant or a view-
point, next to a planned stop at a charging station. If a newly
recomputed optimal plan doesn’t include this specific loca-
tion anymore, the driver’s plans may fall through. Since the
preference of the drivers are not known in the model a priori,
and can change over time after the initial plan computation,
the plan stability can be considered as a possible solution
limiting the variability of the plans for the EV drivers.

2 Cooperative Electric Vehicles Planning
In the original formulation of the Cooperative Electric Ve-
hicles Planning Problem (CEVPP), a tuple (α, ω, ρ, τ) rep-
resents a request an EV makes to the planner, where α is
the starting location, ω is the destination, ρ is the range of
the EV, and τ is the time when it joins the fleet (i.e., its de-
parture time from location α). When the initial plan π(0) is
computed or when a replanning occurs, the objective is to
find a global plan:

π(i) =
[
π
(i)
1 , π

(i)
2 , . . . , π

(i)
ki

]
,

where π
(i)
j is the plan of the jth EV after the ith replanning,

and ki is the number of EVs in the fleet at that moment.
In CEVPP, the objective function Z used to measure the



quality of a global plan π(i) is defined as follows:

Z(π(i)) =
1

ki

ki∑
j=1
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,

where C⋆(πj) is the cost of the optimal plan for the jth

EV when it is alone on the road network, i.e., the cost of a
shortest-time plan assuming the waiting time is zero at each
station. CEVPP uses the squared difference between C(π

(i)
j )

and C⋆(πj) in Z instead of using the makespan (maximum
cost over all EV plans) or the flowtime (sum of the costs
of all EV plans) because end users of a system based on
CEVPP would not want to undergo a large detour to help
many other end-users save a small amount of time.

The cost of plan π
(i)
j is given by:

C(π
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j ) = Tr(π
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j ) + Tc(π

(i)
j ),

where Tr(π
(i)
j ) is the time spent on the road, Tw(π

(i)
j ) is the

time spent waiting at the charging stations, and Tc(π
(i)
j ) is

the time spent charging.
The optimal plan during the ith replanning is found by

solving the following optimization problem:

π⋆(i) = argmin
π(i)∈Π(i)

Z(π(i)),

where Π(i) is the set of all possible plans considering the
vehicles active in the fleet during the ith replanning.

Since this optimization problem cannot be solved exactly
in a reasonable time, an approximate planner, named Permu-
tations Cooperative EV Planner (pcEVP), has been recently
proposed (Champagne Gareau et al. 2024). This planner is
inspired by the Cooperative A* algorithm (Silver 2005). It
considers multiple permutations of EVs and computes the
plan for each EV one by one in the order given by the permu-
tations, considering the plans of the already computed EVs
as soft constraints using a reservation table that estimate the
waiting times. Since each permutation may yield a different
global solution, the pcEVP planner considers multiple per-
mutations and selects the best solution found according to
the objective function Z. While in theory, even considering
all possible permutations provides no guarantee of finding
the optimal solution, the pcEVP planner has been shown to
find satisfactory solutions in practice, even for a subset of
permutations (e.g., log(k!) of the k! possible permutations).

3 Increased Stability in CEVPP
After the ith replanning, the plan π

(i)
j of an EV may change

drastically compared to its previous plan π
(i−1)
j . This may

be problematic for the EV driver, who might prefer a better
plan stability to a slightly faster journey. We propose in this
section an extension of CEVPP that takes into account the
predictability of the plans and considers the plan stability in
the objective function of the method.

The objective function we propose is as follows:

Z̄(π(i)) =
1
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π
(0)
j = A1 → B1 → C1 → D1 → E1

↓ ↓

π
(1)
j = B1 → C2 → D2 → E1

↓ ↓

π
(2)
j = B1 → C1 → D3 → E1

↓

π
(3)
j = C1 → D4 → E1

π
(4)
j = D4 → E1

Figure 1: Example of computation of the metric S for one
EV (A1 is the departure point, B1, C1, and D1 are the ini-
tially planned charging stations, and E1 is the arrival point).
Each red arrow represents a planned charging station that
changed after a replanning. Each replanning uses the next
station to be reached (according to the previous plan) as a
starting position. If a vehicle has still not departed from the
starting position of its previous plan, the starting position is
kept the same for the next replanning. That explains why
π
(1)
j and π

(2)
j both starts at B1: the jth EV was still waiting

or charging at B1 during the second replanning.

The new term δ(π
(i)
j ) is defined as:

δ(π
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if i > 0,

0 otherwise,

where [P ] is the Iverson bracket, defined as:

[P ] =

{
1 if P is true,
0 otherwise,

and (ϕi, ri) are parameters controlling respectively (1) the
importance that the driver of the ith EV gives to the plan sta-
bility, and (2) the geometric decay of the penalty over time
for that EV (e.g., we might want to penalize more a change
to the next planned station than we do for a change to a fu-
ture replanned station).

Assuming there are k EVs that were part of the fleet of
EVs at some point and that there were m replannings in to-
tal, we propose to compare the stability of plans obtained
with the baseline CEVPP formulation and with our proposed
extension using the following metric:

S(π(0), π(1), . . . , π(m)) =
1

k

k∑
j=1

m∑
i=1

ki∑
k=1

[
π
(i)
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(i−1)
j,k

]
.

The metric S is the average of the number of changes of the
charging stations planned for each EV. A visual representa-
tion of that metric for one EV is shown in Figure 1.



Test characteristics Baseline Stability-aware extension Change
Network #EVs Z(π) (min) S (# changes) Z(π) (min) S (# changes) Z(π) (min) S (%)

Québec347 8 1.9 0.1 1.9 0.1 0.0 0.00
Québec347 16 3.1 1.3 4.5 0.7 1.4 -46.15
Québec347 32 10.6 6.2 10.9 1.9 0.3 -69.35
Québec347 64 28.3 31.3 31.3 19.0 3.0 -39.30
Québec347 128 27.9 72.7 37.7 34.5 9.8 -52.54

Québec1816 8 0.5 0.9 0.5 0.8 0.0 -11.11
Québec1816 16 0.7 2.4 2.0 1.1 1.3 -54.17
Québec1816 32 6.2 3.3 8.2 2.6 2.0 -21.21
Québec1816 64 11.2 34.4 19.2 16.5 8.0 -52.03
Québec1816 128 73.0 230.5 113.0 116.5 40.0 -49.46

Table 1: Comparison of the baseline and stability-aware CEVPP planners based on pcEVP in terms of Z: penalty, in minutes,
of the solution compared to the theoretical best case, and S: metric of plan stability, on the Québec347 and Québec1816 road
networks. Each row reports the average of the results over 10 CEVPP requests.

4 Experiments
In this section, we conduct an empirical evaluation to com-
pare the baseline CEVPP (which uses the Z objective func-
tion) and our proposed extension (which uses the Z̄ objec-
tive function). We measure and compare two metrics: (1) the
penalty Z(π) of the executed plans, and (2) the metric S of
the plan stability defined above. In our experiments, we fixed
the parameters ϕi to 15 and ri to 1.0 for all EV i.

The pcTVI algorithm and the proposed extension were
implemented in C++ and compiled using the GNU g++ com-
piler (version 13.2). All our experiments were performed
on a PC computer equipped with a 4.2 GHz Intel Core i5-
7600K CPU and 32 GB of RAM.

All tests were conducted on a real road network and real
charging stations using the pcEVP planner. We don’t report
here the running times, as the extension we propose has a
negligible impact on the running time of the pcEVP planner.

Since the proposed extension of the CEVPP problem
keeps the next planned station of each EV fixed, only EV
plans requiring more than one charging station can change
after a replanning. Therefore, in our empirical evaluation,
we considered a vast road network covering the territory of
the Québec Province (Canada), where the journeys between
certain pairs of cities can be very long (thus requiring sev-
eral recharges) and where the network of charging stations
is relatively well developed. The road network data (i.e., the
nodes and the road segments) were taken from the Open-
StreetMap project (Weber and Haklay 2008).

The stations considered in the tests come from a public
network of EV charging stations called the Electric Cir-
cuit (Hydro-Québec 2023). We used two different sets of
stations in our evaluation, with respectively 347 and 1816
stations. In the implementation, without loss of generality,
each charging station had the same power output and all EVs
were charging at a constant rate of 9 km/min.

To assess the performance of the proposed algorithms, we
generated random sets of EV requests, ranging from 8 to 128
EVs per set. For each set, we randomly sampled two sta-
tions at least 200 km apart. We then sampled from a 100 km

cluster around these stations the departure α and destination
ω nodes to simulate multiple EVs journeying along similar
paths. The range of each vehicle was sampled uniformly be-
tween 100 and 550 km. Finally, the departure time of each
vehicle was sampled uniformly between 0 and 4 hours.

Table 1 shows the results of our empirical evaluation. The
first two columns present the characteristics of the test (the
name of the network, either Québec347 or Québec1816, and
the number of EVs in the fleet). The next four columns
present the penalty Z and the evaluation metric S for the
baseline CEVPP formulation and the proposed extension.
Finally, the last two columns present respectively for the
penalty Z and the metric S the variation between the base-
line CEVPP formulation and the proposed extension. Each
test (i.e., each row in the table) consisted of running 10
CEVPP instances. We report in the table the averages ob-
tained over 10 experiments. We also present these results
graphically in Figure 2 and Figure 3, representing respec-
tively the penalty Z and the metric S for the baseline CEVPP
formulation and the proposed extension on both networks.

The results we can observe in Table 1 and in Fig-
ures 2 and 3 suggest that the proposed extension of the
CEVPP problem considering the plan stability can sig-
nificantly reduce the number of changes in the originally
planned charging stations, thereby increasing the plan sta-
bility. On average over all tests, the proposed method re-
duced the number of changes by 39.53% compared to the
baseline CEVPP. This is achieved without significantly in-
creasing the penalty of the executed paths compared to the
baseline CEVPP formulation. On average, the penalty in-
creased by only 0.13 minutes per EV compared to the base-
line CEVPP. The results suggest that the percentage of re-
duction of the number of changes in the planned charging
stations could have been even higher (by increasing the value
of the parameter ϕi) while keeping a relatively low penalty
of the executed paths.



Figure 2: Average (over 10 experiments) penalty Z as a func-
tion of the number of EVs on the road for the baseline algo-
rithm and the proposed extension for the two considered road
networks. Both axes use a logarithmic scale.

Figure 3: Average (over 10 experiments) metric S as a func-
tion of the number of EVs on the road for the baseline algo-
rithm and the proposed extension for the two considered road
networks. Both axes use a logarithmic scale.

5 Conclusion
In this paper, we proposed an extension of the Cooperative
Electric Vehicles Planning Problem (CEVPP) that takes into
account the predictability of the plans and considers plan sta-
bility in its objective function. We showed that our approach
can significantly reduce the variability of the plans, while
keeping low the global plan execution time. The proposed
extension can be parameterized dynamically to adapt to the
preferences of the EV drivers.

In our evaluation, we fixed the parameter ϕi to 15 for all
EVs, thus controlling the importance given to the plan sta-
bility. Future work will focus on a more thorough empirical
evaluation, where we will vary the parameter ϕi to assess its
impact on the plan stability and the penalty of the executed
paths. Therefore, our future investigation will address the
problem of trade-off between the plan execution time and
the plan stability. Moreover, we plan to compare the pro-
posed extension with existing approaches used to increase
the plan stability in other multi-agent planning problems.
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