
Introduction Existing methods Proposed methods Evaluation Conclusion

Cache-Efficient Dynamic Programming MDP Solver
Leveraging modern computer memory architecture

Jaël Champagne Gareau
Guillaume Gosset

Éric Beaudry
Vladimir Makarenkov

Computer Science Department
Université du Québec à Montréal

30 September – 4 October 2023

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 1 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Outline

1 Introduction

2 Existing methods
Classical planning methods
Cache-efficient planning methods

3 Proposed methods
eTVI
eiTVI

4 Evaluation

5 Conclusion

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 2 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Probabilistic planning

Markov Decision Processes (MDPs) are used to model problems of
decision-making under uncertainty.

We focus this research on the Stochastic Shortest-Path (SSP-MDP) problem,
where the objective is to find a policy π : S → A that minimizes the expected cost
Vπ : S → R to reach a goal state.

Many real-world MDP problems require a large number of state variables.

Curse of dimensionality : the number of states is exponential in the number of
state variables.

Often we are limited in time to find the problem’s solution.

Objective of this research

Find new ways to accelerate MDP computations of an optimal policy.

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 3 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Classical planning methods

Classical dynamic programming algorithms

Policy Iteration (PI) :

π0
E−−→ Vπ0 I−−→ π1

E−−→ Vπ1 I−−→ π2
E−−→ · · · I−−→ π⋆ E−−→ V⋆.

Value Iteration (VI) :

V0
S−−→ V1

S−−→ V2
S−−→ · · · S−−→ V⋆.

VI uses the Bellman optimality equations :

∀s ∈ S, V (s) =

0 if s ∈ G,
min
a∈A

[
C(s, a) +

∑
s′∈S

T (s, a, s′)V (s′)
]

otherwise.

In both cases, many sweeps over the state-space (in arbitrary order) are
necessary.

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 4 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Classical planning methods

Heuristic search algorithms

These methods assume that we have two additionnal elements :
A an initial state known a priori ;
B a heuristic function h : S → R estimating the expected cost to reach a goal.

Common MDP heuristic search algorithms :
LAO* (ILAO*, RLAO*, BLAO*, etc.), LRTDP (BRTDP, FRTDP, etc.).

They allow to prune parts of the state space.

s0 sgA

B

C

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 5 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Classical planning methods

Heuristic search algorithms

These methods assume that we have two additionnal elements :
A an initial state known a priori ;
B a heuristic function h : S → R estimating the expected cost to reach a goal.

Common MDP heuristic search algorithms :
LAO* (ILAO*, RLAO*, BLAO*, etc.), LRTDP (BRTDP, FRTDP, etc.).

They allow to prune parts of the state space.
A States not reachable from s0 can be pruned.
B States that cannot reach sg can be pruned.
C States that cannot be reached from s0 when following the policy π⋆ can be pruned.

s0 sgA

B

C

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 5 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Classical planning methods

Prioritized methods

The order of states’ value update can drastically influence convergence time.
E.g., can range from O(n) to O(n2) state updates.

Prioritized VI (PVI) : a priority is assigned to every state.
Many priority criteria can be used with PVI :

Prioritize states close to a goal (for a more efficient back-propagation of states’ value) ;
Prioritize states with a large residual (furthest from convergence) ;

Some methods partition the MDP and assign priority to them rather than states.
E.g., P-EVA, P3VI, etc.

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 6 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Classical planning methods

Topological Value Iteration

Instead of assigning an explicit priority to the states or partitions, we can instead
find an order given implicitly by the graph topology of the determinized MDP, e.g.,
its strongly connected components (SCCs).

E.g., Topological Value Iteration (TVI), FTVI, etc.

s0

s1

s2

s3

s4

sg

a00

a01

a10a21

a20

a30

a40

5
a41

2
0.6

0.4

s0 s1, s2 s3, s4 sg

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 7 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Cache-efficient planning methods

Modern computer architecture

Another way of improving speed is to consider the architecture of modern
computers, e.g. :

Memory hierarchy ;
Thread level parallelism ;
Data level parallelism (e.g., SIMD operations) ;
GPU implementation.

Many considerable speedups have been obtained in other domains.

E.g., in ML, many researches considered efficient implementations of ML
techniques (specialized data structures, specialized CPU datatype (bfloat),
consideration of cache, etc.), leading to a speedup of many orders of magnitude.

In MDP planning, these elements have been much less considered.

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 8 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Cache-efficient planning methods

Memory Hierarchy

Type Size Transfer Rate (GB/s) Latency (ns)

L1 64 Ko/cores 2000 1
L2 1 Mo/cores 1000 3
L3 32 Mo 600 12

DDR5 8-128 Go 50 90
SSD (NVMe) 250 Go-4 To 7 80 000

HDD/SSD

RAM

L3

L2
L1

Registers

Slower/Larger

Faster/Smaller

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 9 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Cache-efficient planning methods

Cache-efficient with clustering (CEC) algorithm

The Cache-efficient with clustering 1 algorithm is based on FTVI.
It subdivides each SCC into partitions using a clustering algorithm :

take a random state s inside the currently considered SCC;
do a BFS from s and add visited state to the current partition ;
stop when the size of the partition reaches the L3 cache size.

For each partitionned SCC, CEC cyclically do one Bellman-sweep on each
partition one-by-one until the SCC converges.

1. Jain, A., & Sahni, S. (2020). Cache efficient Value Iteration using clustering and annealing. Computer
Communications, 159, 186-197.

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 10 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Cache-efficient planning methods

Cache-efficient MDP memory representation

CSR-MDP 2 is inspired by the Compressed Sparse Row repr. of graphs.
Minimal wasted memory (no pointers, no need to have memory padding).
By being packed tightly in memory, we ensure most memory inside loaded cache
lines is useful for the current computation.
This representation also simplifies an SIMD (e.g., SSE, AVX) implementation.
Most solving algorithms can be used with MDPs stored in CSR-MDP format.

S
i i+1

j1 j2
S : successive cells → interval of states’ actions
A : successive cells → interval of actions’ effects
C : cost of actions N ,P : effects of actions

A
j1 j1+1

k1 k2

j2

C
j1 j2

N
k1 k2

P
k1 k2

Figure – CSR-MDP memory representation scheme

2. Champagne Gareau, J., Beaudry, É., & Makarenkov, V. (2022). Cache-Efficient Memory Representation of
Markov Decision Processes. Proceedings of the Canadian Conference on Artificial Intelligence.

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 11 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Performance analysis of Topological Value Iteration

TVI can improve performance compared to VI in three ways :
A it maximizes the effectiveness of every state backup by ensuring only converged state

values are propagated from one SCC to the other ;
B the backup order is given by a postorder DFS, which will most likely improve the

information flow compared to the arbitrary order used by VI ;
C since there are fewer states considered in an SCC sweep, there are less cache misses.

1

2

3

4

5

6

7

4

3

7

2

6

1

5

VI : arbitrary order TVI : DFS postorder

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 12 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

eTVI

eTVI : Reordering according to the order external to the SCCs

One way to improve cache performance is to reorder the MDP in memory such
that the data relative to each SCC is contiguous.

Our first proposed algorithm, eTVI, uses this idea and reorders the states
according to their external position (the position among the SCCs).

eTVI example : reordering according to an order external to the SCCs

We assume each state takes 16 bytes.

Each SCC contains four states.

Before : each SCC is spreaded across four cache lines.

After : each SCC is contained in a single cache line.

eTVI reordering

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 13 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

eiTVI

eiTVI : Reordering according to the order internal to the SCCs

eTVI only considers the order of states with respect to the SCC they’re part of.

What about the order of states inside an SCC?

States should be stored in the same order as the Bellman sweeps consider them.

eiTVI example : reordering according to an order internal to the SCCs

Assume the shade of a color represent the order of states considered inside an
SCC during a sweep (lighter shades are considered before darker shades).

eTVI

eiTVI

extra-component reordering

intra-component reordering

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 14 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

eiTVI

eiTVI : What is the best order internal to an SCC?

TVI uses the states’ discover order while searching the SCCs (a postorder DFS).

We should use an order that maximizes state-values propagation
One possible solution : find a dynamic order in a way similar to, e.g., PVI.

It requires a priority queue, and has a large overhead.

Instead, we propose a static backup order given by a reversed BFS started at the
outward border states of the SCC.

Example of the proposed order

States in blue are the outward border states of the SCC.

States are numbered by their optimal propagation order.

7

6

5

4

3

2

1

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 15 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Methodology

We compare the performance of eTVI and eiTVI to the performance of :
VI (the asynchroneous round-robin variant) ;
LRTDP (with the admissible and domain independent hmin heuristic) ;
ILAO* ;
TVI.

We implemented the proposed algorithms in C++.

We used the GNU g++ compiler (version 11.2) with level 3 optimizations.

The tests were carried out on a computer equipped with an Intel Core i5 7600k
processor.

On every instance, the planner never used more than 2 GB of RAM, therefore it
was not a relevant metric with regard to the capacity of modern computers.

For each parameter configurations of the tested planning domains, we randomly
generated 15 instances.

To minimize random factors, we report the median values of the obtained results.

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 16 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Description of the planning domains

We compared the performance of the algorithms on three different MDP domains.

Layered domain

Domain introduced in TVI’s original paper.

Generic domain that models situations where some events are irreversible.

E.g., board games where the number of pieces of a player can never grow.

Single-Armed Pendulum (SAP) domain

Two-dimensional minimum-time optimal control problem.

Two possible actions at each state : apply a positive or negative torque.

Objective : Balance the pendulum to the top.

Wetfloor domain

Many rooms (square navigation grid) are connected to each other.

Each cell in a room can be slightly wet, heavily wet or dry.

The goal is to find a shortest path between two positions.

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 17 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Layered domain when varying the number of states (10 layers)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

R
u

n
n

in
g

 t
im

e
 (

s)

Number of states (x 100 000)

VI
LRTDP

ILAO*
TVI

eTVI
eiTVI

(a) Layered domain (variable number of states)

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 18 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Layered domain when varying the number of layers (1M states)

100

101

102

103

 1 10 100 1000 10000

R
u

n
n

in
g

 t
im

e
 (

s)

Number of layers

VI
LRTDP

ILAO*
TVI

eTVI
eiTVI

(b) Layered domain (variable number of layers)

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 19 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Single-Armed Pendulum (SAP) domain

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700 800 900 1000

R
u

n
n

in
g

 t
im

e
 (

s)

Number of states (x 1000)

VI
LRTDP

ILAO*
TVI

eTVI
eiTVI

(c): SAP domain

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 20 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Wetfloor domain (500k states)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6 7 8 9 10

R
u

n
n

in
g

 t
im

e
 (

s)

Number of rooms

VI
LRTDP

ILAO*
TVI

eTVI
eiTVI

(d) Wetfloor domain

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 21 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Results : Average speedup factors obtained on each tested domain

Domain TVI vs VI eTVI vs TVI eiTVI vs eTVI eiTVI vs TVI

Layered (var. states) 2.4988 1.4306 1.3955 1.9965
Layered (var. layers) 1.8054 1.4549 0.9774 1.4220

SAP 1.3999 1.3725 1.7440 2.3937
Wetfloor 1.3810 1.7788 1.8635 3.3147

Average 1.6285 1.6018 1.3119 2.1014

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 22 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Results : Cache metrics obtained

Layered domain (instance with 1M states, 10 layers).

Solver Cache-Refs Cache-Misses Miss Percent

TVI 2.87G 0.860G 29.96
eTVI 2.39G 0.413G 17.28
eiTVI 1.59G 0.328G 20.62

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 23 / 24

Introduction Existing methods Proposed methods Evaluation Conclusion

Conclusion

We proposed two ways of improving cache performance of MDP solvers, both
based on TVI and leveraging the CSR-MDP memory representation :

eTVI : reorders states in memory so that data inside each SCC is contiguous ;
eiTVI : reorders states in memory so that the order in memory matches the order in
which states are considered during Bellman sweeps.

Both methods combined led to solvers more than twice as fast.

Combined with the speedup factor of 6 provided by CSR-MDP, the resulting
planner is thus on average more than 12 times as fast.
As future work, we plan to :

develop and test a subdivision of SCCs into smaller subcomponents with minimal
dependencies between them using, e.g., Louvain’s algorithm or by finding provably
suboptimal strong bridges.

Acknowledgments

We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC)
and the Fonds de recherche du Québec — Nature et technologies (FRQNT).

Gareau et al. UQAM Cache-Efficient MDP Solving 30 September – 4 October 2023 24 / 24

	Introduction
	

	Existing methods
	Classical planning methods
	Cache-efficient planning methods

	Proposed methods
	eTVI
	eiTVI

	Evaluation
	

	Conclusion
	

