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Introduction

» Markov Decision Processes (MDPs) are used to model problems of

decision-making under uncertainties.
» MDPs can be solved with different approaches:

» Dynamic Programming (e.g., Value lteration (VI) and Policy Iteration);
» Heuristic search (e.g., LRTDP and LAO*);

» Prioritized methods (Prioritized VI (PVI) and Topological VI (TVI)).

Computer Architecture

» One way of improving speed is to consider modern computer architectures:
» e.g., Memory hierarchy, Thread/Data Level Parallelism (SIMD, GPU), etc.

Example of eTVI/eiTVI

» Assume each state takes 16 bytes and each SCC contains four states.
» With TVI: each SCC is spreaded across four cache lines.
» With eTVI: each SCC is contained in a single cache line.

» With eiTVI: each cache line is read in order.

eTVI| | extra-component reordering

N

eiTVI | intra-component reordering

» In Machine Learning (ML), taking these elements into account lead to a
speedup of many orders of magnitude. - .
» In MDP planning, these elements have been much less considered.
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SSD (NVMe) 250 Go-4 To 7 30 000 v 2.87G 0.8606G 29.96
elV 2.39G 0.413G 17.28
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Cache-Efficient Memory Representation of MDPs

» CSR-MDP is inspired by the Compressed Sparse Row repr. of graphs.
» It has minimal wasted memory (no pointers, no memory padding).
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igure 1. CSR-MDP memory representation scheme

Online Material

eTVI and eiTVI: Reordering states to improve cache-performance

The paper, presentation slides, C++ code, test .
instance generators and supplementary materials .
are available by scanning the following QR code: .

» Both techniques improve cache performance by matching the order of states

in memory and the Bellman sweeps’ states consideration order.

» eTVI: Reorders states to make each SCC contiguous in memory.
» Since TVI solves each SCC one-by-one and only considers each of them once, making

each of them contiguous in memory minimizes the number of cache-misses.

» ei I VI: Also reorders states such that the order within an SCC match the
order of states in the Bellman sweep inside the SCC.
» Making these orders match increases the amount of useful data in each loaded cache line.
» We should use an order that maximizes state-values propagation.
» We propose an order given by a reversed BFS from the outward border states of the SCC.

Acknowledgments

Fonds de recherche

CRONG  atureer
G ° 2 g NSEHB QUébEC

We acknowledge the support of the Natural Sciences and Engineering Council of Canada
(NSERC) and the Fonds de recherche du Québec — Nature et technologies (FRQNT).

()~ —

https://jaelgareau.com/en/publication/gareau-ecai23

30 September — 4 October 2023

champagne gareau.jael@ugam.ca


https://jaelgareau.com/en/publication/gareau-ecai23
mailto:champagne_gareau.jael@uqam.ca

