Cache-Efficient Dynamic Programming MDP Solver

B
Jaél Champagne Gareau, Guillaume Gosset, Eric Beaudry, Vladimir Makarenkov U QAM

Centre de Recherche en Intelligence Artificielle (CRIA), Département d’'Informatique, Université du Québec a Montréal (UQAM)

Introduction

» Markov Decision Processes (MDPs) are used to model problems of

decision-making under uncertainties.
» MDPs can be solved with different approaches:

» Dynamic Programming (e.g., Value lteration (VI) and Policy Iteration);
» Heuristic search (e.g., LRTDP and LAO*);

» Prioritized methods (Prioritized VI (PVI) and Topological VI (TVI)).

Computer Architecture

» One way of improving speed is to consider modern computer architectures:
» e.g., Memory hierarchy, Thread/Data Level Parallelism (SIMD, GPU), etc.

Example of eTVI/eiTVI

» Assume each state takes 16 bytes and each SCC contains four states.
» With TVI: each SCC is spreaded across four cache lines.
» With eTVI: each SCC is contained in a single cache line.

» With eiTVI: each cache line is read in order.

eTVI| | extra-component reordering

N

eiTVI | intra-component reordering

» In Machine Learning (ML), taking these elements into account lead to a
speedup of many orders of magnitude. - .
» In MDP planning, these elements have been much less considered.
Faster/Smaller Regljslters
L3 Table 1: Speedup factors when comparing VI, TVI, eTVI and eiTVI
RAM Domain, TVIvs VI elTVlvs TVI eilTVIvselVI eilTV|vs TVI
Layered (var. states) 2.4988 1.4306 1.3955 1.9965
5b/<Sh Layered (var. layers) 1.8054 1.4549 0.9774 1.4220
- / SAP 1.3999 1.3725 1.7440 2.3937
ower/Larger Wetfloor ~ 1.3810 1.7788 1.8635 3.3147
ype Size ransfer Rate (GB/s) Latency (ns) Average| 1.6285 1.6018 1.3119 2.1014
1 64 Ko/cores 2000 1
2 1 Mo/ cores 1000 3 able 2: Cache metrics obtained on the Layered domain
|3 32 Mo 600 12 . .
DDRS 3198 Go 50 00 Solver Cache-Refs Cache-Misses Miss Percent
SSD (NVMe) 250 Go-4 To 7 30 000 v 2.87G 0.8606G 29.96
elV 2.39G 0.413G 17.28
eiTV 1.59G 0.328G 20.62

Cache-Efficient Memory Representation of MDPs

» CSR-MDP is inspired by the Compressed Sparse Row repr. of graphs.
» It has minimal wasted memory (no pointers, no memory padding).

References

[1] Jaél Champagne Gareau, Eric Beaudry, and Vladimir Makarenkov, ‘Cache-efficient memory representation of
Markov decision processes’, Proceedings of the Canadian Conference on Artificial Intelligence, (2022).

» By being packed tightly in memory, we ensure that most memory inside
loaded cache lines is useful for the current computation.

» This representation simplifies an SIMD (e.g., SSE, AVX) implementation.
» Most solving algorithms can be used with MDPs stored in CSR-MDP format.

[2] Peng Dai, Mausam, Daniel Weld, and Judy Goldsmith, ‘“Topological value iteration algorithms’, Journal of
Artificial Intelligence Research, 42, 181-209, (2011).

[3] Anuj Jain and Sartaj Sahni, ‘Cache efficient value iteration using clustering and annealing’, Computer
Communications, 159, 186-197, (2020).

i 1+1
— T S: successive cells — interval of states’ actions

S ° o o J1 |2 ® o o A: successive cells — interval of actions’ effects
@ C: cost of actions N, P: effects of actions

[4] Mausam and Andrey Kolobov, Planning with Markov Decision Processes: An Al Perspective, number 1, Morgan
& Claypool, 2012.

£\
A 4

[5] David Wingate and Kevin D Seppi, ‘Cache performance of priority metrics for MDP solvers’, in AAAI Workshop

J1 ./1_|_]- J2 J1 J2 - Technical Report, volume WS-04-08, pp. 103-106. AAAI Press, (2004).
A * o o lkl k2 * o o l ° o o C e o o l e o o l e o o [6] David Wingate and Kevin D Seppi, ‘P3VI: A partitioned, prioritized, parallel value iterator’, in Proceedings of
-4 o O O the Twenty-First International Conference on Machine Learning, ICML 2004, pp. 863-870, (2004).
kq k- kq k- [7] David Wingate and Kevin D Seppi, ‘Prioritization methods for accelerating MDP solvers’, Journal of Machine

D

_/\/'....

O—
[
[

l Learning Research, 6, 851-881, (2005).

igure 1. CSR-MDP memory representation scheme

Online Material

eTVI and eiTVI: Reordering states to improve cache-performance

The paper, presentation slides, C++ code, test .
instance generators and supplementary materials .
are available by scanning the following QR code: .

» Both techniques improve cache performance by matching the order of states

in memory and the Bellman sweeps’ states consideration order.

» eTVI: Reorders states to make each SCC contiguous in memory.
» Since TVI solves each SCC one-by-one and only considers each of them once, making

each of them contiguous in memory minimizes the number of cache-misses.

» ei I VI: Also reorders states such that the order within an SCC match the
order of states in the Bellman sweep inside the SCC.
» Making these orders match increases the amount of useful data in each loaded cache line.
» We should use an order that maximizes state-values propagation.
» We propose an order given by a reversed BFS from the outward border states of the SCC.

Acknowledgments

Fonds de recherche

CRONG atureer
G ° 2 g NSEHB QUébEC

We acknowledge the support of the Natural Sciences and Engineering Council of Canada
(NSERC) and the Fonds de recherche du Québec — Nature et technologies (FRQNT).

()~ —

https://jaelgareau.com/en/publication/gareau-ecai23

30 September — 4 October 2023

champagne gareau.jael@ugam.ca

https://jaelgareau.com/en/publication/gareau-ecai23
mailto:champagne_gareau.jael@uqam.ca

