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Automated planning & scheduling

Automated planning & scheduling is a branch of Artificial Intelligence.

Its objective is to find plans allowing agents to reach goals.
Some planning problems are probabilistic (i.e., there are uncertainties) :

endogenous uncertainties (i.e., due to the agent) ;
exogeneous uncertainties (i.e., due to the environment).

Markov Decision Processes (MDPs) are often used to model these problems of
decision-making under uncertainty.

Objective of this research

Most interesting real-world MDP problems require a large number of state
variables.

Curse of dimensionality : Number of states is exponential in the number of state
variables.

The memory required to store the MDP modelization can be significant.

Often we are limited in time to find the problem’s solution.

Therefore, we need to find ways to accelerate MDP computations.
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Mathematical MDP representation

There exists many variants of MDPs. The most common are :
Finite-horizon MDP ;
Infinite-horizon Discounted MDP ;
Stochastic Shortest-Path MDP (SSP-MDP).

We focus on SSP-MDPs, since they are more general.

Stochastic Shortest-Path MDP
An SSP-MDP is a tuple (S,A,T ,C,G) where :

S is the finite set of states ;

A is the finite set of actions that the agent can execute ;

T : S × A × S → [0, 1] is the transition function, where T (s, a, s′) gives the
probability that the agent reach state s′ if it exécute action a at state s ;

C : S × A × S → R+ is the cost function where C(s, a, s′) gives the cost an
agent must pay if it reaches state s′ when executing action a at state s ;

G ⊆ S is the set of goal states.
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Classical algorithms

Policy

A (Markovian and stationnary) policy is a function π : S → A that returns, for every
state, the action an agent should execute.

Value function
A value function (associated to a policy π) is a function Vπ : S → R that maps each
state s to the expected total cost of an agent starting at s that executes the actions
given by π until reaching a goal.

Classical algorithms

Policy Iteration (PI) (1960) 1

Value Iteration (VI) (1957) 2

1. Howard, R. A. (1960). Dynamic Programming and Markov Processes. John Wiley.
2. Bellman, R. (1957). Dynamic Programming. Prentice Hall.
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Modern approaches

Heuristic search

These methods assume that we have two additionnal elements :
1 an initial state known a priori ;
2 a heuristic function h : S → R estimating the expected cost to reach a goal.

Common MDP heuristic search algorithms :
LAO* (ILAO*, RLAO*, BLAO*, etc.), LRTDP (BRTDP, FRTDP, etc.).

Prioritized methods

The order of states’ value update drastically influence convergence time.

E.g., can range from O(n) to O(n2) state updates.

Prioritized VI (PVI) : a priority is assigned to every state.
There’s many variants with different priority function :

Prioritize states close to a goal (for a more efficient back-propagation of states’ value) ;
Prioritize states with a large residual (farthest from convergence) ;

Newer methods partition the MDP and assign priority to them rather than states.

E.g., Topological Value Iteration (TVI), FTVI, P3VI, etc.
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Computer architecture

Another way of improving speed is to consider the architecture of modern
computers, e.g. :

Cache memory hierarchy ;
Parallelism ;
Instruction set (e.g., SIMD operations) ;
GPU implementation.

Many considerable speedups have been obtained in other domains.

E.g., in ML, many researches have recently provided some efficient
implementations of ML techniques (specialized data structures, specialized CPU
datatype (bfloat), consideration of cache, etc.).

In MDP planning, no such elements have ever been considered.

Our goal with this research is to propose an MDP memory representation
designed to be cache efficient (with any MDP solver).

Champagne Gareau, Beaudry, Makarenkov UQAM Cache-Efficient MDP Representation 30 May – 3 June 2022 7 / 18



Introduction Markov Decision Processes Memory Representation of MDPs Evaluation Conclusion

Existing implementations

The performance difference between MDP algorithms (VI, TVI, LRTDP, etc.) can
sometimes be smaller than the performance speedup that can be obtained by a
more efficient implementation.

The data structures used to store an MDP in memory are hardly ever mentionned.
We looked at publicly available MDP implementations to compare their memory
representation (all in C++) :

AI Toolbox 3

Uses dense or sparse matrices to store MDPs (one for transitions, and one for costs) ;
Some memory is wasted (dense matrices) ;
The cache efficiency is not optimal (sparse matrices).

TVI authors’ implementation
Linked list of states ;
Each state contains a linked list of applicable actions ;
Very poor cache efficiency and some memory overhead.

MDP Engine Library 4 and G-Pack 5 (C++ Libraries)
Made resp. by authors of LRTDP and Gourmand (ICAPS2014 planning competition 2nd place) ;
Hash tables of structures ;
Two levels of indirection which prevent optimal cache usage.

3. E. Bargiacchi, D. M. Roijers, and A. Nowé. AI-Toolbox : A C++ library for Reinforcement Learning and Planning
(with Python Bindings). Journal of Machine Learning Research (2020), pp. 1-12.
4. https://github.com/bonetblai/mdp-engine

5. A. Kolobov, Mausam, and D. S. Weld, “LRTDP versus UCT for online probabilistic planning,” in Proc. of the Natl.
Conf. on AI, 2012, vol. 3, no. 1, pp. 1786–1792.
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CSR-MDP Representation

CSR-MDP is inspired by the Compressed Sparse Row representation of graphs.
This is the first MDP representation using a “structure of arrays” (SoA) memory
layout instead of an “array of structures” (AoS) layout.
Minimal wasted memory (no pointers, no need to have memory padding).
By being packed tightly in memory, we ensure most memory inside loaded cache
lines is useful for the current computation.
This representation also simplifies an SIMD (e.g., SSE, AVX) implementation of
the computations (e.g., Bellman-Backups)

S . . . . . .
i i+1

j1 j2
S : successive cells → interval of states’ actions
A : successive cells → interval of actions’ effects
C : cost of actions N ,P : effects of actions

A . . . . . . . . .
j1 j1+1

k1 k2

j2

C . . . . . . . . .
j1 j2

N . . . . . . . . .
k1 k2

P . . . . . . . . .
k1 k2

Figure – CSR-MDP memory representation scheme
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CSR-MDP Example
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Methodology

We compare the performance of CSR-MDP to the performance of the MDP
representation in TVI’s implementation by its authors on 3 differents algorithms :

VI (the asynchroneous round-robin variant) ;
LRTDP (with the admissible and domain independent hmin heuristic) ;
TVI.

We implemented the proposed algorithms in C++.

We used the GNU g++ compiler (version 11.2) with level 3 optimizations.

The compiler auto-vectorized some loops using AVX instructions.

The tests were carried out on a PC computer equipped with an Intel Core i5 7600k
processor.

The planner never used more than 2 GB, even for the largest domain instances so
memory usage of our proposed planners was not an issue.

For each parameter configurations of the tested planning domains, we randomly
generated 15 instances.

To minimize random factors, we report the median values of the obtained results.
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Description of the planning domains

We evaluated the performance of VI, LRTDP and TVI on 3 different MDP domains.

Layered domain

Domain introduced in TVI’s original paper.

Generic domain that models situations where some events are irreversible.

E.g., board games where the number of pieces of a player can never grow.

Single-Armed Pendulum (SAP) domain

Two-dimensional minimum-time optimal control problem.

Two possible actions at each state : apply a positive or negative torque.

Objective : Balance the pendulum to the top.

Wetfloor domain

Many rooms (square navigation grid) are connected to each other.

Each cell in a room can be slightly or heavily wet, or dry.

The goal is to find a shortest path between two positions.
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Layered domain when varying the number of states (10 layers)
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Layered domain when varying the number of layers (1M states)
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Single-Armed Pendulum (SAP) domain
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Wetfloor domain (500k states)

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7  8  9  10

R
u

n
n

in
g

 t
im

e
 (

s)

Number of rooms

VIb
LRTDPb

TVIb
VIcsr

LRTDPcsr
TVIcsr

Champagne Gareau, Beaudry, Makarenkov UQAM Cache-Efficient MDP Representation 30 May – 3 June 2022 16 / 18



Introduction Markov Decision Processes Memory Representation of MDPs Evaluation Conclusion

Results summary

Domain VI LRTDP TVI

Layered (var. states) 5.87481 7.91771 4.46547
Layered (var. layers) 6.77031 > 4.07741 > 3.87843

SAP 4.36132 > 1.0539 5.34032
Wetfloor > 15.3342 > 13.812 12.3605

Average > 8.69197 > 2.86112 > 6.6481

Table – Average speedup factors obtained by every solver on every domain using the proposed CSR-MDP data
structure when compared to the baseline implementation. Numbers with the ‘>’ symbol are lower bounds on
the true speedup factor.
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Conclusion

Finding an ϵ-optimal policy of an MDP can take an unreasonable amount of time
due to the curse of dimensionality.
We proposed a new way of storing an MDP in memory, called CSR-MDP, that :

minimizes memory access time when solving MDPs.
allows an SIMD implementation of the bellman-backup operator.

The proposed CSR-MDP representation led to an average speedup (over all
tested domains) of 8.6, 2.8 and 6.6, when using VI, LRTDP and TVI, respectively.
As future work, we plan to :

develop and test a state-space decomposition method that takes into account the
different levels of cache memory in modern CPUs, which could almost totally eliminate
the cache misses when solving a large MDP.
investigate if the proposed representation can be used in GPU-based implementations.

Acknowledgments

We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC)
and the Fonds de recherche du Québec — Nature et technologies (FRQNT).

Champagne Gareau, Beaudry, Makarenkov UQAM Cache-Efficient MDP Representation 30 May – 3 June 2022 18 / 18


	Introduction
	

	Markov Decision Processes
	

	Memory Representation of MDPs
	

	Evaluation
	

	Conclusion
	


