Introduction	Problem definition	Proposed methods	Evaluation 00000000	Conclusion O

Cooperative Electric Vehicles Planning

Jaël Champagne Gareau Marc-André Lavoie Guillaume Gosset Éric Beaudry

Computer Science Department Université du Québec à Montréal

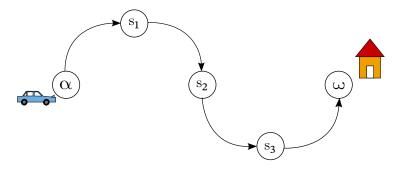
6-10 may 2024

Introduction	Problem definition	Proposed methods	Evaluation 000000000	Conclusion O
Outline				

1 Introduction

- 2 Problem definition
- 3 Proposed methods

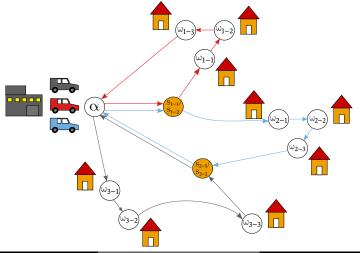
4 Evaluation


5 Conclusion

Electric Vehicles Planning

- EVs are becoming increasingly widespread due to :
 - environmental concerns;
 - improvements in their battery range;
 - increased charging stations availability.
- There are some challenges specific to EV planners, e.g., :
 - intermediate stops for recharging when the journey is too long;
 - unpredictable waiting times at the charging stations;
 - regenerative braking.

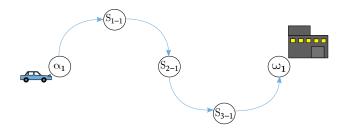
Electric Vehicles Path-Planning (EVPP)


- Single EV path-planning from α to ω in a road network;
- The EV has a range ρ and must hop from stations to stations;
- Many variants (consideration of regenerative braking, waiting times, etc.)

Introduction	Problem definition	Proposed methods	Evaluation 000000000	Conclusion O

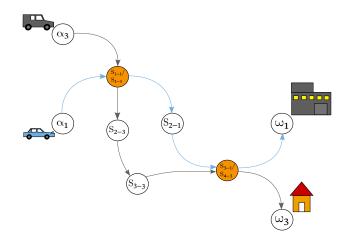
Electric Vehicles Routing Problem (EVRP)

- A fleet of EVs controlled by the same entity and sharing the same objective;
 - E.g., deliver packages from a depot/warehouse to a set of locations;
- Goal : find a mininum set of EVs able to complete all tasks with minimal cost;

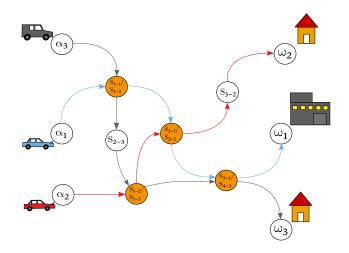

Introduction	Problem definition	Proposed methods	Evaluation 00000000	Conclusion O
Motivation				

"An open challenge is to devise algorithms for socially optimal real-time routing with a reasonable response time for a large number of vehicles."¹

Basharzad, S. N., Choudhury, F. M., Tanin, E., Andrew, L. L. H., Samet, H., & Sarvi, M. (2022). Electric vehicle charging : It is not as simple as charging a smartphone. Proceedings of the 30th International Conference on Advances in Geographic Information Systems, 1–4. https://doi.org/10.1145/3557915.3560967


Introduction	Problem definition	Proposed methods	Evaluation 00000000	Conclusion O

Motivation – Example


Introduction	Problem definition O●OOO	Proposed methods	Evaluation 00000000	Conclusion O

Motivation – Example

Introduction	Problem definition ○●○○○	Proposed methods	Evaluation 00000000	Conclusion O

Motivation – Example

Cooperative Electric Vehicles Planning Problem (CEVPP)

- There are many EVs, controlled by different end-users, each with their own goal.
- It is desirable to plan their routes collectively to reduce global waiting times.
- EV drivers can send a planning request to a centralized planner.
- New EVs can enter the planning problem at any time.
- In practice, the planner can recompute a global plan
 - every N new requests to the planner since the last replanning;
 - every T minutes.
- In this research, we focus on a batch of EV requests during a given replanning.

Main differences between EVRP and CEVPP			
EVRP	CEVPP		
EVs start and end at same position	Each EV has its own start and end		
The EVs cooperate to reach a common goal	Each EV has its own goal		
The problem is static / offline	The problem is dynamic / online		
Find min-set of EVs able to	Minimize the global plan cost		
complete all tasks with min-cost	(travel + charging + waiting) times		

Introduction 000	Problem definition 000●0	Proposed methods	Evaluation 00000000	Conclusion O
CEVPP –	Definition			

Road Network

We define a road network *M* as a tuple (*V*, *E*, λ , μ , *S*), where :

- V is the set of nodes (latitude, longitude) on the map;
- E is the set of road segments (edges);
- $\lambda: E \to \mathbb{R}^+$ gives the length (in m) of every edge;
- $\mu \colon E \to \mathbb{R}^+$ gives the expected speed (in m/s) at every edge;
- $S \subseteq V$ is the set of all charging stations.

EV Request

Each EV has an associated EV request, i.e., a tuple ($\alpha, \omega, \rho, \tau$), where :

- $\blacksquare \alpha$ is the departure node;
- ω is the arrival node;
- ρ is the range of the EV;
- $\blacksquare \ \tau$ is the time of departure.

Introduction	Problem definition	Proposed methods	Evaluation 000000000	Conclusion O
	D. C. W			

CEVPP – Definition

CEVPP instance

A CEVPP instance is a tuple (M, R) where :

- M is a road network;
- $R = \langle (\alpha_1, \omega_1, \tau_1, \rho_1), \dots, (\alpha_k, \omega_k, \tau_k, \rho_k) \rangle$ is a list of EV requests in an arbitrary order.

Objective

The **objective** of a CEVPP instance is to find a solution $\pi = \langle \pi_1, \pi_1, \dots, \pi_k \rangle$ that

minimizes total (travel + charge + wait) time of the batch of EVs.

$$\pi^{\star} = \arg \min_{\pi \in \Pi} \left[\frac{1}{k} \sum_{i=1}^{k} \left(C(\pi_i) - C^{\star}(\pi_i) \right)^2 \right].$$

- $C^{\star}(\pi_i)$ is the cost of the optimal plan of the *i*th EV when it is alone in *M*, i.e., :
 - geographically the shortest-path;
 - no waiting time.

Introduction	Problem definition	Proposed methods •OO	Evaluation 00000000	Conclusion O
Baseline	olanner			

- We precompute a stations' graph G = (S, E') with the Floyd-Warshall algorithm.
- We assume, without loss of generality, that $(\alpha, \omega) \in S^2$ are in G

Algorithm Baseline Non-Cooperative EV Planner

procedure NCEVP($(M, R = \langle r_1, \dots, r_k \rangle)$: CEVPP, G : stations' graph) **for all** $r_i \in R$ **do** \triangleright Considers travel and charging, but not waiting time $\pi_i \leftarrow A^*(M, r_i)$ \triangleright Only considers edges e with length $\lambda(e) < \rho_i$ $\pi \leftarrow \pi \cup {\pi_i}$ Compute the global penalty $P(\pi)$ \triangleright Entirely due to waiting times

Time complexity of NCEVP : $\Theta(k \cdot |S|^2)$.

Introduction	Problem definition	Proposed methods	Evaluation 000000000	Conclusion O

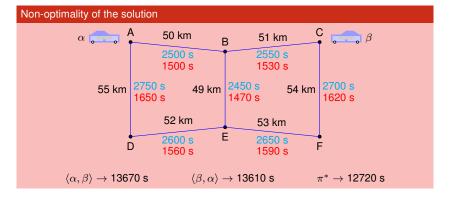
Optimal Planner

We propose an optimal planner that uses a graph-planning algorithm to search in a graph representing the problem's state-space.

State

We define a state to be an array $\sigma = [(\sigma_1^s, \sigma_1^t), (\sigma_2^s, \sigma_2^t), \dots, (\sigma_k^s, \sigma_k^t)]$, where :

- σ_i^s is the charging station currently used by the *i*th EV;
- σ_i^t is the planned departure time of the *i*th EV from station σ_i^s .


Introduction	Problem definition	Proposed methods ○●○	Evaluation 00000000	Conclusion O
Optimal	l Planner			
Algo	rithm Exhaustive-Search C	ooperative EV Planner		
1: 0	procedure ESCEVP((M, R =	$= \langle r_1, \ldots, r_k \rangle$) : CEVPP)		
2:	open ← Empty Priority Q	() , , , , , , , , , , , , , , , , , ,	g + h)	
3:	open.push(INITIALSTATE	(<i>M</i> , <i>R</i>), 0)		
4:	while not open.empty()	do		
5:	$\sigma \leftarrow open.pop()$			
6:	if ISGOALSTATE(σ) th			
7:	for all vehicle $i \in \{1,\}$		⊳ any EV car	1 move
8:		ABLESTATIONS (σ_i^s, ho_i) do		
9:	if <i>i</i> th EV alread	y visited <i>s</i> then continue		
10:	$\sigma' \leftarrow \sigma$	\triangleright state σ' is sat	ame as σ except for the	i th EV
11:		nputeTimeDeparture(
12:	$f \leftarrow \min_{i \in \{1, \dots, k\}} (C)$	$COST(i, \sigma') + HEURISTIC$	$(i, \sigma', r_i))$	
13:	open.push(σ' ,	f)		
14:	Extract global plan π from	1 <i>σ</i> *		

15: Compute the global penalty $P(\pi)$

Time complexity of ESCEVP : $\Omega(|S|^k)$.

Introduction	Problem definition	Proposed methods OO●	Evaluation 000000000	Conclusion O
Permutati	one Planner			

- We propose another cooperative planner, inspired by Cooperative-A*.
- It computes a plan for each EV one-by-one, but records charging stations occupancy in a reservation table.
- The Modified-A* algorithm considers the waiting time due to existing reservations when planning a new EV.

Introduction	Problem definition	Proposed methods ○○●	Evaluation 000000000	Conclusion O
Permuta	ations Planner			
Algo	rithm Permutations Cooperations	ative EV Planner		
1: p	procedure PCEVP((<i>M</i> , <i>R</i> =	$\langle r_1, \ldots, r_k \rangle$) : CEVPP)		
2:	$\mathcal{P} \leftarrow GetConsideredPi$			
3:	$C_{best} \leftarrow \infty$			
4:	for all $\phi \in \mathcal{P}$ do			

```
\pi \leftarrow \emptyset
                      \mathcal{R} \leftarrow \mathsf{Empty} \mathsf{Reservation} \mathsf{Table}
6:
```

```
for all r_i \in \phi do
 7:
                     \pi_i = \mathsf{MODIFIEDA}^*(M, r_i, \mathcal{R})
 8.
                    UPDATERESERVATIONTABLE(\mathcal{R}, \pi)
 9:
                     \pi \leftarrow \pi \cup \{\pi_i\}
10:
               if C(\pi) < C_{best} then
11:
12:
                     \pi_{best} \leftarrow \pi
```

Compute the global penalty $P(\pi_{best})$

⊳ In given order

```
Time complexity : \Theta(|\mathcal{P}| \cdot |S|^2).
```

 $C_{\text{best}} \leftarrow C(\pi)$

5

13:

14:

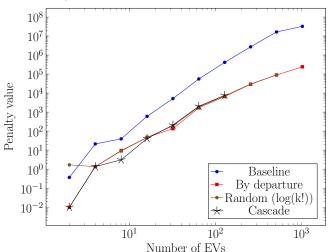
Introduction 000	Problem definition	Proposed methods	Evaluation •••••••	Conclusion O

Methodology

- We compared the baseline planner to three different instances of pcEVP :
 - only one permutation, where EVs are ordered by time of departure τ ($\Theta(|S|^2)$);
 - random log(k!) permutations ($\Theta(k \log k \cdot |S|^2)$;
 - cascade permutations ($\Theta(k^2 \cdot |S|^2)$).
- Empirical evaluation is done on two regions of Canada (OpenStreetMap) :
 - Maritimes (2 105 607 vertices and 4 200 189 edges);
 - Québec (4 416 080 vertices and 8 797 051 edges).
- We used real charging stations data from the *Electric Circuit*.
 - Maritimes had 50 charging stations;
 - Québec had two tested subset of stations (347 and 1816 stations).
- All algorithms were implemented in C++ and compiled with g++ (version 12.2).
- Experiments were performed on a 4.2 GHz Intel Core i5-7600k CPU.
- We measured two metrics :
 - running time of the algorithms;
 - penalty $\frac{1}{k} \sum_{i=1}^{k} (C(\pi_i) C^*(\pi_i))^2$ of the solutions.
- EV requests :
 - Range ρ is sampled uniformly between 100 and 550 km.
 - Departure time \(\tau\) is sampled uniformly between 0 and 120 minutes.
 - The departure α (resp. arrival ω) of each EV is sampled from a 50 km cluster.
- We used a timeout value of 15 minutes per request.

Introduction 000	Problem definition	Proposed methods	Evaluation 00000000	Conclusion O

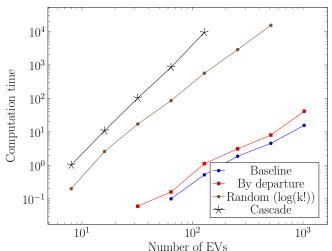
Average running times (ms)


Network	Baseline	By departure	Random $log(k!)$	Cascade
Maritimes ₅₀	0.09	0.19	95.35	1459.2
Quebec ₃₄₇	2.272	2.70	99.27	558.86
Quebec ₁₈₁₆	93.84	103.76	1058.18	3656.6
Average	32.07	35.55	417.60	1891.55

Average reduction (%) in penalty (min) compared to baseline

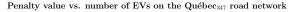
Network	By departure	Random $log(k!)$	Cascade
Maritimes ₅₀	93.06	93.07	95.22
Quebec ₃₄₇	86.33	86.73	89.35
Quebec ₁₈₁₆	96.69	97.57	98.25
Average	92.03	92.46	94.27

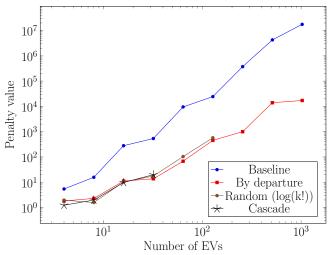
Introduction 000	Problem definition	Proposed methods	Evaluation 00000000	Conclusion O


Penalty on Maritimes₅₀

Penalty value vs. number of EVs on the Maritimes₅₀ road network

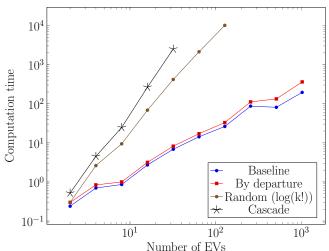
Introduction	Problem definition	Proposed methods	Evaluation 000000000	Conclusion O


Computation times on Maritimes₅₀

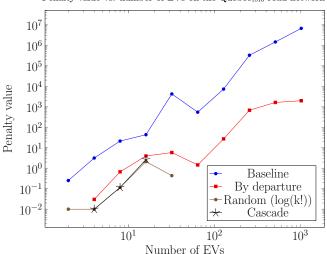


Computation time vs. number of EVs on the Maritimes $_{50}$ road network

Introduction	Problem definition	Proposed methods	Evaluation 000000000	Conclusion O

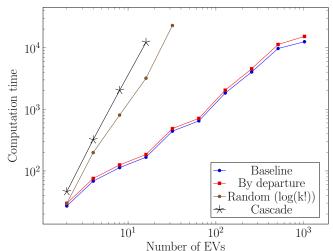

Penalty on Quebec₃₄₇

Introduction	Problem definition	Proposed methods	Evaluation 000000000	Conclusion O


Computation times on Quebec₃₄₇

Computation time vs. number of EVs on the $Québec_{347}$ road network

Introduction 000	Problem definition	Proposed methods	Evaluation 000000000	Conclusion O


Penalty on Quebec₁₈₁₆

Penalty value vs. number of EVs on the Québec₁₈₁₆ road network

Introduction	Problem definition	Proposed methods	Evaluation 00000000	Conclusion O

Computation times on Quebec₁₈₁₆

Computation time vs. number of EVs on the $Québec_{1816}$ road network

Introduction 000	Problem definition	Proposed methods	Evaluation 00000000	Conclusion •
Conclusion				

- We introduced the new CEVPP problem.
- Overall time can drastically be reduced (2h per EV, on average).
- As the number of EVs grows, the number of bottlenecks at stations grows too, presenting more opportunities for optimization and further emphasizing the relevance of CEVPP.
- Future works :
 - Finding ways of pruning large part of the state-space, to make that optimal planner more useful for real-world applications.
 - Conduct a comprehensive analysis of various permutation subsets.
 - Consider waiting times caused by EVs external to our planner.

Acknowledgments

Fonds de recherche Nature et technologies

We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC) and the Fonds de recherche du Québec — Nature et technologies (FRQNT).