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Electric Vehicles Path-Planning (EVPP)

▶ Single EV path-planning from α to ω;

▶The EV has a range ρ and must hop from stations to stations;

▶Many variants (consideration of regenerative braking, waiting times, etc.)
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Electric Vehicles Routing Problem (EVRP)

▶A fleet of EVs controlled by the same entity and sharing the same objective;
▶ E.g., deliver packages from a warehouse to a set of locations;

▶Goal: find a min-set of EVs able to complete all tasks with minimal cost;
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Cooperative Electric Vehicles Planning Problem (CEVPP)

“An open challenge is to devise algorithms for socially optimal real-time
routing with a reasonable response time for a large number of vehicles.” [1]

▶Many EVs, controlled by different end-users, each with their own goal.

▶ It is desirable to plan their routes collectively to reduce waiting times.
▶Each EV has an associated request, i.e., a tuple (α, ω, ρ, τ ), where:

▶ α is the departure node; ω is the arrival node;
▶ ρ is the range of the EV; τ is the time of departure.

▶A CEVPP instance is a road network M along with a set of EV requests R .

▶Objective: minimize total (travel + charge + wait) time of the batch of EVs.

▶π⋆ = argminπ∈Π P(π) := arg minπ∈Π
[
1
k

∑k
i=1 (C (πi)− C ⋆(πi))

2
]
.

▶C ⋆(πi) is the cost of the shortest-path when the EV is alone in M .
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Algorithms

▶Baseline (ncEVP): plan each EV separately as a distinct EVPP problem.
▶Optimal (escEVP): search in a state-space where states are array:

▶ σ = [(σs
1, σ

t
1), (σ

s
2, σ

t
2), . . . , (σ

s
k, σ

t
k)], where:

▶ σs
i is the charging station currently used by the EV i ;

▶ σt
i is the planned departure time of EV i from station σs

i .

▶Uses an heuristic function to prune parts of the state-space.
▶ Algorithm has worst-case time complexity Ω(|S |k).

▶Permutations (pcEVP): inspired by the Cooperative-A* algorithm.
▶ Computes a plan one EV at a time, considering other EVs already commited to a station.
▶The order in which EVs are considered can produce different solutions.
▶The algorithm test a subset of permutations of EVs and keep the best solution.
▶Time complexity: Θ(|P| · |S |2), where P is the set of considered permutations.

Results

▶We compared the baseline planner to three different instances of pcEVP:
▶ only one permutation, where EVs are ordered by time of departure τ (Θ(S2));
▶ random log(k!) permutations (Θ(k log k · S2);
▶ cascade permutations (Θ(k2 · S2).

▶Empirical evaluation is done on two regions (Québec and Maritimes).

▶We used real charging stations data from Circuit-Électrique.

Table 1: Average running times (ms)

Network Baseline By departure Random log(k!) Cascade

Maritimes50 0.09 0.19 95.35 1459.2
Quebec347 2.272 2.70 99.27 558.86
Quebec1816 93.84 103.76 1058.18 3656.6

Average 32.07 35.55 417.60 1891.55

Table 2: Average reduction (%) in penalty P(π) (min) compared to baseline

Network By departure Random log(k!) Cascade

Maritimes50 93.06 93.07 95.22
Quebec347 86.33 86.73 89.35
Quebec1816 96.69 97.57 98.25

Average 92.03 92.46 94.27
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Penalty value vs. number of EVs on the Québec1816 road network
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Online Material

The paper, presentation slides, C++ code, test
instance generators and supplementary materials
are available by scanning the following QR code:
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