Jaël Champagne Gareau
Jaël Champagne Gareau
Home
Teaching
Projects
Publications
Contact
Light
Dark
Automatic
English
English
Français
Probabilistic Planning
Résolution efficace de processus décisionnels de Markov par l'exploitation d'approches structurelles et algorithmiques tirant parti de l'architecture moderne des ordinateurs
Cette thèse présente des contributions en planification automatique sous incertitude, un domaine de l’intelligence artificielle. …
Jaël Champagne Gareau
PDF
Cite
Project
Slides
Towards Topologically Diverse Probabilistic Planning Benchmarks
Markov Decision Processes (MDPs) are often used in Artificial Intelligence to solve probabilistic sequential decision-making problems. …
Jaël Champagne Gareau
,
Éric Beaudry
,
Vladimir Makarenkov
PDF
Cite
Code
Project
Slides
Markov Decision Processes
This project aimed at finding different ways to improve (SSP-)MDP planners performance when considering computer architectures (e.g., cache-memory, parallelism)
Code
pcTVI: Parallel MDP Solver Using a Decomposition Into Independent Chains
Markov Decision Processes (MDPs) are useful to solve real-world probabilistic planning problems. However, finding an optimal solution …
Jaël Champagne Gareau
,
Éric Beaudry
,
Vladimir Makarenkov
PDF
Cite
Project
Slides
DOI
Cite
×