
An Energy-Efficient Method with Dynamic GPS
Sampling Rate for Transport Mode Detection and

Trip Reconstruction

Jonathan Milot[0000−0002−5470−7672], Jaël Champagne
Gareau[0000−0002−1906−4157], and Éric Beaudry[0000−0002−4460−0556]

Université du Québec à Montréal
{milot.jonathan,champagne_gareau.jael}@courrier.uqam.ca

beaudry.eric@uqam.ca

Abstract. This paper presents a novel approach for trip reconstruction
and transport mode detection. While traditional methods use a fixed
GPS sampling rate, our proposed method uses a dynamic rate to avoid
unnecessary sensing and waste of energy. We determine a time for each
sampling that gives an interesting trade-off using a particle filter. Our ap-
proach uses as input a map, including transit network circuits and sched-
ules, and produces as output the estimated road segments and transport
modes used. The effectiveness of our approach is shown empirically using
real map and transit network data. Our technique achieves an accuracy
of 96.3% for a 15.0% energy consumption reduction (compared to the ex-
isting technique that has the closest accuracy) and an accuracy of 85.6%
for a 56.0% energy consumption reduction.

Keywords: Particle filter · Transport mode detection · Trip reconstruc-
tion · Energy efficiency · Mobile device · GPS · Dynamic sampling

1 Introduction

The popularity of smartphones has brought out many services and applications
based on their sensors (GPS, accelerometer, gyroscope, etc.) such as activity
recognition [7], trip reconstruction (TR) [8,11] and transport mode detection
(TMD) [3,13]. TR and TMD are both used for traffic study in urban planning to
automate the process of data collection [12] instead of using the traditional sur-
vey method that is less precise and more expensive. Most GPS sensing are usually
made at a fixed predetermined rate ranging from 1 second to 60 seconds [3,12].
However, these algorithms of reconstruction suffer from major drawbacks.

One problem is that a GPS device consumes a significant amount of energy.
Using the GPS at 1 Hz consumes 143.1 mW on the HTC Dream and Google
Nexus One models [5]. According to our experiments, the consumption is 439.3
mW for a Samsung Galaxy S8 and 397.44 mW for an Asus Zenphone 4 Max.
The battery life of these smartphones ranged from 8 to 10 hours for normal
daily use (cellular and Wi-Fi enabled, 4G web navigation when travelling in

public transit, etc.) when continuous geolocation was enabled. Sensing at a rate
of 1 Hz is therefore hardly acceptable for users, since it drastically reduces their
smartphone’s autonomy. On another side, a lower rate decreases the accuracy
of TR and TMD algorithms. Hence, there is a trade-off between the quality of
estimation of the algorithm and the energy consumption (EC) of the GPS.

This ideal compromise highly depends on the road network and the smart-
phone’s state after a certain time. Indeed, in a city’s downtown, the number
of different possible paths and the possible change of transport mode (e.g., bus
stops, metro stations, etc.) makes it harder to do TR and TMD, because many
paths and transport mode combination can explain the transition between the
last two GPS sensing. In comparison, on a highway there is usually only one pos-
sibility (transport by car and shortest path between two points). The interval
∆t between sensing should thus dynamically change depending on the position
to achieve the optimal trade-off between precision and EC.

This paper presents a dynamic GPS sampling rate technique for path recon-
struction and transport mode detection based on a particle filter that dynami-
cally determines the moment to use the GPS sensor in order to get a compromise,
depending on preferences, between energy consumption and accuracy.

2 Related Works

Since we address two related problems at once, TR and TMD, this section
presents previous works related to one or both of these problems. Furthermore,
we discuss their impacts on energy consumption.

2.1 Trip Reconstruction

The simplest TR approaches use a fixed GPS sensing rate. Usually, such ap-
proaches are tested with different fixed frequencies to show the decrease in ac-
curacy when the rate increase. One approach is iterative based [11], where each
node must be within a certain Euclidean distance from the corresponding GPS
reading and directly linked to the previous associated node. If no node can be
associated to a reading, the maximum distance is increased and another iter-
ation begins. Another approach [10] uses a Hidden Markov Model (HMM) [4]
to determine the most likely road segment for each GPS reading. The authors
limit the EC of their algorithm by updating the sampling rate according to the
mobile device state (stopped, normal road, highway). However, they do not test
their approach with sampling rates higher than 30s to avoid an arc-skipping sit-
uation, which could greatly increase the error according to the authors. Finally,
a model to generate a set of true potential paths and to associate likelihood to
each of them is used in [1]. The model uses the speed, the time and the bearing
of the mobile device to determine these likelihood. All these techniques high-
light the same problem: an higher sampling rate to reduce EC directly leads to
an increased error due to the arc-skipping problem. In this situation, the road

segments associated with two consecutive GPS readings may not be directly con-
nected and a shortest-path algorithm must be used to link them [11,12]. This
can induce errors, since some users may not have used the shortest path for some
reason (e.g., construction site, personal preference, traffic, etc.).

2.2 Transport Modes Detection

TMD algorithms are generally based on machine learning (ML), since the goal is
to classify data (GPS readings) among a defined and limited set of class (trans-
port mode). While these approaches can achieve a good accuracy on average
(more than 90%), they rely on a high GPS sampling rate (from 1s to 15s) and
do not attempt to reconstruct the smartphone’s trip. Some approaches also use
data from other sensors, such as the smartphone’s accelerometer or field sensor,
to improve their accuracy [3]. Many TMD algorithms use ML techniques such
as neural network (NN) [3,15] and derivatives such as convolutional neural net-
work (CNN) [9]. Other ML techniques such as Random Forest [13] and Support
Vector Machine [2] have also been experimented.

Table 1: Transport Mode Detection accuracy in related works
Approach Sampling Rate (s) Walk Car Bus Average

[13] 15 98.9% 80.8% 93.0% 93.8%
[2] 60 93.8% 88.5% 58.3% 88.0%
[3] 1 95.0% 72.0% 84.0% 83.8%
[15] 1 98.5% 94.2% 88.4% 94.4%
[9] 1-5 95.7% 67.4% 81.1% 84.8%

The general accuracy of these techniques ranged from 84.8% for the CNN [9]
to 94.4% for the NN with particle swarm optimization [15]. However, these av-
erage accuracies hide a deeper phenomenon that occurs in all reviewed study:
distinguishing a walk is generally easier than a car or a bus. Table 1 presents
the accuracy for the different papers previously cited. The walk accuracy is al-
ways the highest (more than 93.8%), while the car and bus can vary a lot (from
67.4% to 94.2% and 58.3% to 93.0% respectively). This is mainly due to the
resemblance between the motorized transport modes (car and bus) regarding
speed and acceleration. Thus, they are easily mixed up and wrongly classified.
A note on the results of [2]: they claim to have an average accuracy of 88.0%
for a sampling rate of 60s. While this seems impressive for such a low rate, it is
important to note that 52.4% of their data is labelled as walk. Since this is the
easiest transport mode to detect, this greatly increases their average accuracy.

2.3 Combined Approach

A technique to do both TR and TMD has been proposed by [8]. They use a
conventional GIS-based map-matching algorithm to reconstruct the path and a

rule-based algorithm to identify transport modes (walk, bicycle, bus and car).
Their average error on TR is 21% for a sample rate of 1s, which is worse than
algorithms previously cited who exclusively reconstruct path. Their accuracy for
transport mode detection is 92%, which is similar to other approaches.

3 Model and Algorithm

The goal of our method is to estimate the paths and the transport modes used
during a trip with the GPS sensor of a smartphone while minimizing the EC. To
achieve this, we use a particle filter to estimate the smartphone’s state according
to GPS readings made at a dynamic rate. This approach novelty resides in the
use of the GPS sensor only when really needed, unlike other methods that make
GPS readings at a given fixed rate. The general outline goes as follows:

1. Make a GPS reading to estimate the smartphone’s state s.
2. Simulate the evolution of s until a time t in the future.
3. Determine a time t? ∈]0, t] offering an interesting compromise between ac-

curacy and energy consumption. When t? is reached, return to 1.

We model the space in which the smartphone evolves as a graph G = (N,A).
A node is a point n = (n.Lat, n.Long) ∈ N on the map, and an arc is a road
segment a = (nfrom, nto, vmax, Te) ∈ A containing respectively the start and end
vertex of the segment as well as the maximum possible speed on the segment and
the set of all transport modes that can cross a. Each arc thus represents a way
to move between two vertices by using a transport mode (e.g., a road segment,
a subway tunnel, a train rail, etc.). The smartphone’s state at time t is a tuple
st = (p,m, v, P), where p, m, v and P are respectively the smartphone’s current
position (a point lying on an arc in A), current transport mode, current speed
and actual path travelled (list of nodes and transport modes used).

The smartphone’s state s is not directly observable, but is estimated from
an external sensor (GPS). Since this sensor is not perfect and contains noise,
s.p is modelled as a Gaussian distribution N (x, σ2), where x is the projection of
the coordinate returned by the GPS on the nearest arc a and σ2 is the accuracy
of the GPS. It is important to note that the smartphone’s position distribution
may overlap other allowed arcs according to the current transport mode if x is
near the extremity of a. The evolution of s.p after a time interval ∆t is given by

st+∆t.p = st.p+N (s.v, σ2)×∆t. (1)

We need to take into account the fact that s.v can vary during ∆t (due to traffic,
road elevation, etc.). Over a long ∆t, we consider that a Gaussian distribution
is a good speed approximation at which the smartphone travels.

Using this formalism, the goal of our algorithm is to determine the list of
nodes and transport modes P =

〈
(n0,m0), (n1,m1), . . . , (nk−1,mk−1), (nk,mk)

〉
taken during a trip, where mi is the transport mode used to reach ni.

Since the evolution of the state s can hardly be modelled with parametric
functions (smartphones can be at different places after ∆t, each with multiple

Algorithm 1 The particle filter algorithm
1: function Particle Filter(Xt−1, ut, zt)
2: X̄ = Xt = ∅
3: for m = 1 to M do
4: sample x[m]

t ∼ p(xt|ut, x
[m]
t−1)

5: w
[m]
t = p(zt|x[m]

t)

6: X̄t = X̄t + 〈x[m]
t , w

[m]
t 〉

7: for m = 1 to M do
8: draw i with probability ∝ w[i]

t

9: add x[i]t to Xt

10: return Xt

different uncertainties, paths and transport modes), we use a particle filter. A
generic implementation [14] is presented in Algorithm 1. Simply put, a particle
filter’s goal is to approximate a belief state bel(xt) by a set of particles Xt of size
M randomly constructed by the control data ut and the sensor data zt. In our
problem, ut is simply the time passed since the last sampling and zt, the data
returned by the GPS sensor. Figure 1 shows a visual example of the particle
filter and the evolution of Xt between two GPS readings. Compare the particles
circled in blue (resp. red) in Fig. 1b and in Fig. 1c. We see that many instances
of s30.p are overlapping with different path.

(a) t = 1. The uncer-
tainty on s1.p is low; few
particles are needed.

(b) t = 10. s10.p can be 5
different positions.

(c) t = 30. More par-
ticles needed to represent
the increased uncertainty

Fig. 1: Evolution of Xt over 30 seconds for the car transport mode

One of the challenges of the particle filter is to determine how and when
to resample Xt. After a certain amount of time, the distribution of Xt may
become too coarse to adequately approximate bel(xt). Therefore, a resample is
eventually needed. In our case, a resampling implies a new sensor observation
zt (which incur energy consumption). We implement two methods to determine
the next resampling time and avoid unnecessary sensing.

0.054

0.242

0.399

0.242

0.054

Edge

−4 −3 −2 −1 0 1 2 3 4
0

0.1
0.2
0.3
0.4

D
en
si
ty

Fig. 2: Discretization of N (0, 1) at every σ on [−2σ, 2σ].

Firstly, to avoid too coarse particle distribution, we discretize all possible
states with particles instead of sampling a fixed M particles from p(xt|ut, x[m]

t−1)
(Line 4 of Algorithm 1). Rather than calculating the density probability of
bel(xt) with the density of particles, we associate a weight to each particle (see
Fig. 2). When a smartphone reach position nto of its current arc, the particle
splits itself on all outgoing edges of nto. An example of this splitting is shown in
Fig. 1b. This ensures that all possible states are covered by the state space.

Secondly, we compute a score for Xt with the following formula:

score(Xt) =
∑
x∈Xt

(
P (x)× xacc

)
− 2

1 + eλt
. (2)

This score represents the trade-off between the EC and the average estimated
accuracy (TR and TMD) the algorithm would achieve if a GPS sensing was done
at t, the elapsed time since the last sensing. The λ parameter in Eq. (2) controls
the trade-off between EC and accuracy. A small λ saves more energy, while a
bigger one gives an higher accuracy. Fig. 3 shows an example of the evolution of
score(Xt) for different values of λ. The next sensing and resampling are done at
the time t that maximizes score(Xt). The variable xacc in Eq. (2) is defined by

xacc =
∑
x′∈X̄t

P (x′)× |x
′
Path+ |+ |x′Path− |
|xPath|

, (3)

where x is the particle currently computed, |x′Path+ | is the length of path that
x′ has, but not x, |x′Path− | is the length of path that x′ doesn’t have, but x has
and X̄t is the set of particles at a lower distance from x than the GPS sensing
error. xacc represents the average error on the state estimated when x is the true
smartphone’s state and a GPS sensing is made. Due to noise induced by the
GPS sensor, the true smartphone’s state could be mistaken for any particles of
X̄t (which can have different paths and transport modes).

The resampling is pretty straightforward: score(Xt) is computed on [0, T [,
where T is a time limit after which no better trade-off can be obtained. The
time t? offering the ideal compromise between accuracy and energy consumption

0 10 20 30 40 50 60

Time since last sensing(s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e

λ = 0.03
λ = 0.05
λ = 0.07

Fig. 3: score(Xt) for 3 different λ. With λ = 0.03, the next sensing is done after
21s. With the other two λ, the next sensing is done after 44s.

is retained (i.e., t? = argmaxt score(Xt)). Then, a GPS sensing is done at time
t?. The particles in a radius of 2σ2 are simply kept instead of generating new
particles (Line 8 of Algorithm 1), where σ2 is the radius (in meters) of 68%
confidence given by the GPS sensor. In the event that no particles are in this
radius, it is gradually extended by step of one σ2. The weight of each particle is
then updated according to their distance from the GPS sensing.

The change of transport mode during a trip is considered in two circum-
stances:

1. Special nodes. Some transport mode changes can only happen on prede-
termined nodes, such as walk→bus. When a particle p reaches these nodes, a
copy of p is instantiated with a predefined different transport mode, changing
its transition behaviour between nodes.

2. During resampling. Some other transport mode changes can occur prac-
tically anywhere, such as car→walk. Since those transport mode changes
don’t occur often, we only consider this change at resampling. Based on our
results, the error induced by this simplification is acceptable compared to
the combinatorial explosion that would arise if a transport mode change was
considered every second. Therefore, after each resampling, a new state is
added to Xt for every transport modes not already present in Xt.

4 Experimentations

Experimentations were done in the metropolitan region of Montréal, Canada
due to its range of different road network configurations (e.g., dense downtown,
highways, suburbs and country roads on the peripheral region). Moreover, the
presence of multiple bus and subway lines allows us to consider multiple transport
modes. In this experimentation, the transport modes considered are walk, car,
bus and subway. Also, score(Xt) has been evaluated on the interval [0, 300[.

4.1 Data For the Model

The map data comes from the OpenStreetMap (OSM) project, while the transit
network schedule comes directly from the transport societies (STM, RTL, AMT,

STL) that cover the region of Montréal. Bus and subway stations were integrated
to the OSM data by being connected to the nearest node. To obtain the average
speed on every road segment for the car transport mode, we used data collected
by the City of Montréal. With them, we computed an average speed of 28.60±
9.49 km/h. The walk average speed has also been found to be between 3.46±0.65
km/h to 4.93± 0.68 km/h depending on the place he is and his gender [6].

4.2 GPS Data Collection

Table 2: GPS data collected
Transport mode Runtime (hours) Number of GPS readings

Walk 8.03 28514
Car 11.94 42768
Bus 5.13 17290

Subway 2.06 390

Total 27.16 88962

For two months, we recorded daily trips with an Android application on an
Asus Zenphone 4 Max smartphone (model ZC554KL). All trips were collected
at different times of the day and have different path. This ensures a variety
regarding the traffic, weather conditions and transit network schedules. During
these trips, the GPS sensor made readings at a rate of 1 Hz and the user was
asked to manually specify its current transport mode (walk, car, bus or subway).
A summary of the collected data is presented in Table 2. Few GPS readings
have been recorded for the subway transport mode because GPS signal can’t be
received underground (but some stations are close enough to the surface to allow
some signals to pass through).

5 Results

Table 3: Algorithm accuracy with different λ
λ ASR (s) Walk Car Bus Subway Avg TMD TR Error

0.01 20.9 0.996 0.988 0.936 0.932 0.963 0.023
0.03 32.5 0.920 0.982 0.871 0.902 0.919 0.028
0.05 48.6 0.908 0.969 0.806 0.890 0.893 0.031
0.07 59.2 0.876 0.934 0.772 0.885 0.867 0.039
0.09 66.0 0.859 0.932 0.758 0.876 0.856 0.041

Table 4: Transport mode detection matrix confusion for λ = 0.05

Detected
Real Walk Car Bus Subway

Walk 0.908 0.030 0.049 0.013
Car 0.001 0.969 0.021 0.009
Bus 0.048 0.055 0.806 0.091

Subway 0.048 0.018 0.044 0.890

Using the collected data, our approach was tested with different λ values to
analyze the trade-offs between accuracy and EC. Table 3 shows for every tested
λ the average sampling rate (ASR), the accuracy obtained with our technique
for the detection of every transport mode and the average on all of them, as well
as the trip reconstruction error. As expected, a higher λ implies a lower GPS
rate. With λ = 0.01, a reading is made at an average sampling rate of 20.9s,
while with λ = 0.09, the average is at 66.0s.

5.1 Transport Mode Detection

In order to make a fair comparison between our results and those in the related
works, we looked for public implementation of related works’ algorithms to test
them on the same datasets. However, these datasets are, to the best of our
knowledge, not publicly available. Given the usage of machine learning in these
techniques, a reimplementation was hardly possible, since those algorithms are
very sensivitive to the input dataset. Hence, we directly compare our results to
those found in the related works.

The TMD accuracies we obtained are similar to those found in related works.
It ranges from 96.3% with a λ = 0.01 to 85.6% with a λ = 0.09. The result for
λ = 0.01 had a better average accuracy than any other approach cited (the closest
average accuracy being 94.4% [15]) and was achieved with a lower sampling rate.
For example, with λ = 0.01, the average sampling rate is 20.9s while [15] had a
sampling rate of 1s. In comparison to [2], who used the highest sampling rate of
60s and had an accuracy of 88.5% for car and 58.3% for bus [2], our technique
had an accuracy of 93.2% (car) and 75.8% (bus) for an average sampling rate
of 66.0s with λ = 0.09. The TMD errors for λ = 0.05 are shown in a confusion
matrix in Table 4.

The lowest accuracy is for the bus transport mode. It is falsely detected as
car 5.5% of the time, which is understandable since buses and cars drive at a
similar speed. However, car are less often mistaken for bus, only 2.1% of the time.
This is explained by the fact that buses always share the road with cars (except
some rare bus-only lanes) but cars can often be on roads with no buses route.
Bus and subway transport can be confused with walk when the algorithm has
difficulty to determine the exact bus stop or subway station a user has taken.
Furthermore, subway are often (9.1%) confused with bus. This is due to the
presence of a bus line running parallel to a subway line. Often, both routes can

explain the transition between the last GPS location before entering a subway
station and the first one after exiting the other one. Currently, our algorithm
doesn’t consider an absence of GPS reading as being underground. However, the
presented approach’s accuracy could be improved by increasing the weight of
underground states when a weak GPS signal is detected.

5.2 Trip Reconstruction

Ground truth for paths taken was generated from our GPS readings and cor-
rected by hand. We compared the path estimated by our technique to the ground
truth. The path error was computed with the formula [11]:

E =
|P+
Estimated|+ |P

−
Estimated|

|PReal|
, (4)

where PReal is the real path, P+
Estimated is the part of the estimated path in

extra compared to PReal and P−Estimated the part lacking from PReal. TR error
ranged from 2.3% with λ = 0.01 (ASR of 20.9s) to 4.1% with λ = 0.09 (ASR
of 66.0s). Compared to their respective sampling rate, this is better than the
accuracy found in the related works.

5.3 Energy Consumption

The energy efficiency of our approach is demonstrated by running our algorithm
on smartphones and measuring the energy consumption using Android’s Bat-
teryManager API. Before every test, the battery was fully charged and all other
applications were closed. Wifi was disabled and 4G enabled. Running the algo-
rithm directly on the phone would consume more energy than the amount saved
by making less GPS sampling. Hence, the 4G connection is required to commu-
nicate with a server running the algorithm. We also measured the EC for fixed
GPS sampling rates. Table 5 shows the results obtained.

Obviously, for an equal ASR, the presented approach uses more energy than
those that uses a fixed sampling rate because of the 4G usage (e.g., 286.28 mW
versus 272.49 mW for a sampling rate of around 20s). However, we can have a
higher or equivalent accuracy with our approach while using less energy. Most
other approaches use a sampling rate of 1s resulting in an EC of 336.82 mW, the
corresponding average accuracy ranging from 84.0% to 93.0%. In comparison,
the presented approach consumes only 286.28 mW for an accuracy of 96.3% or
210.50 mW for an accuracy of 91.9%. This means a 15.0% EC reduction for
a 3.3% higher accuracy and a 37.5% EC reduction for an equivalent accuracy.
Furthermore, accuracy remains acceptable with greater sampling rate. With an
ASR of 66.0s, the presented approach still achieves an average accuracy of 85.6%
for an EC of 148.18 mW, a 56.0% EC reduction for an equivalent accuracy
compared to [15].

Table 5: Energy consumption according to the GPS sampling rate
Method λ ASR (s) EC (mW)

Fixed
GPS

sampling
rate

- 1 336.82
- 20 272.49
- 40 172.67
- 60 146.74
- 80 114.02

Dynamic
GPS

sampling
rate

0.01 20.9 286.28
0.03 32.5 210.50
0.05 48.6 170.79
0.07 59.2 151.26
0.09 66.0 148.18

6 Conclusion

In this paper, a novel approach for trip reconstruction (TR) and transport mode
detection (TMD) has been presented. It reduces significantly smartphone energy
consumption by using the GPS sensor only when necessary while achieving simi-
lar or higher accuracy compared to state-of-the-art methods. This approach uses
a particle filter that estimates the smartphone’s state evolution and the average
resulting error if a GPS sampling was made at every moment. These average
estimated errors are then weighted in a smartphone energy consumption model
to determine the optimal time to do the next sampling. This is to the best of our
knowledge the first approach using dynamic GPS rate depending on the under-
lying road and transit network. Finally, field tests demonstrated the approach’s
accuracy and energy saving compared to other methods. In the best case, the
presented approach allowed an increase of 3.3% in the average accuracy and a
15.0% energy consumption reduction compared to other approaches and a 37.5%
to 56.0% energy consumption reduction for an equivalent accuracy.

Our experimentation only looked at one smartphone model (i.e. Asus Zen-
phone 4 Max smartphone, model ZC554KL). More tests should be done to com-
pare the power consumption saving with different models, since each part can
have a different power consumption, i.e., GPS sensor, 4G antenna, CPU, etc.
This could lead to different ratios of energy consumption saving on models where
other parts would consume drastically more than the GPS sensor.

Currently, our transport model uses historic data regarding travel speed on
certain road segments to determine an a priori travel speed. However, it does not
consider the possible punctual slowdowns due to traffic. Because real-time data
on traffic is hard to obtain, research has already been made toward predicting and
modelling traffic on a road network. Such methods would improve our transport
model in order to better predict the user’s state evolution when travelling by
transport mode relying on road segments (e.g., car and bus), increasing the
proposed approach accuracy.

References

1. Bierlaire, M., Chen, J., Newman, J.: A probabilistic map matching method for
smartphone GPS data. Transportation Research Part C: Emerging Technologies
26, 78–98 (2013)

2. Bolbol, A., Cheng, T., Tsapakis, I., Haworth, J.: Inferring hybrid transporta-
tion modes from sparse GPS data using a moving window SVM classifi-
cation. Computers, Environment and Urban Systems 36(6), 526–537 (2012).
https://doi.org/10.1016/j.compenvurbsys.2012.06.001

3. Byon, Y.J., Liang, S.: Real-Time Transportation Mode Detection Us-
ing Smartphones and Artificial Neural Networks: Performance Comparisons
Between Smartphones and Conventional Global Positioning System Sen-
sors. Journal of Intelligent Transportation Systems 18(3), 264–272 (2014).
https://doi.org/10.1080/15472450.2013.824762

4. Cappé, O., Moulines, E., Rydén, T.: Inference in hidden markov models. In: Pro-
ceedings of EUSFLAT Conference. pp. 14–16 (2009)

5. Carroll, A., Heiser, G., et al.: An analysis of power consumption in a smartphone.
In: USENIX annual technical conference. vol. 14, pp. 21–21 (2010)

6. Chandra, S., Bharti, A.K.: Speed Distribution Curves for Pedestrians during Walk-
ing and Crossing. Procedia - Social and Behavioral Sciences 104, 660–667 (2013).
https://doi.org/10.1016/j.sbspro.2013.11.160

7. Cheng, W., Erfani, S.M., Zhang, R., Ramamohanarao, K.: Markov Dynamic Sub-
sequence Ensemble for Energy-Efficient Activity Recognition. Proceedings of Mo-
biQuitous, Australia, 2017 p. 10 (2017). https://doi.org/10.475/123_4

8. Chung, E.H., Shalaby, A.: Transportation Planning and Technology A Trip Recon-
struction Tool for GPS-based Personal Travel Surveys. Transportation Planning
and Technology 28(5), 381–401 (2005)

9. Dabiri, S., Heaslip, K.: Inferring transportation modes from GPS trajectories us-
ing a convolutional neural network. Transportation Research Part C: Emerging
Technologies 86, 360–371 (2018). https://doi.org/10.1016/j.trc.2017.11.021

10. Fang, S., Zimmermann, R.: EnAcq: Energy-efficient GPS trajectory data acquisi-
tion based on improved map matching. Proceedings of the 19th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems
pp. 221–230 (2011). https://doi.org/10.1145/2093973.2094004

11. Li, X., Yuan, F., Lindqvist, J.: Feasibility of duty cycling gps receiver for trajectory-
based services. 13th IEEE Annual Consumer Communications & Networking Con-
ference (CCNC) (2016). https://doi.org/10.7282/T3VM4F56

12. Patterson, Z., Fitzsimmons, K.: DataMobile: Smartphone Travel Survey Exper-
iment. Transportation Research Record Journal of the Transportation Research
Board 15(2594), 35–43 (2016)

13. Stenneth, L., Wolfson, O., Yu, P.S., Xu, B.: Transportation mode detection using
mobile phones and GIS information. Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems p. 54
(2011). https://doi.org/10.1145/2093973.2093982

14. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents). MIT Press (2005)

15. Xiao, G., Juan, Z., Gao, J.: Travel Mode Detection Based on Neural Net-
works and Particle Swarm Optimization. Information 6(3), 522–535 (aug 2015).
https://doi.org/10.3390/info6030522

