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Automated planning & scheduling

Machine Learning (ML)

Robotics

Expert Systems

Natural Language
Processing (NLP)

Automated planning
and Scheduling

...

Automated planning & scheduling is a branch of Artificial Intelligence.

Its objective is to find plans allowing agents to reach goals.
Some planning problems are probabilistic (i.e., there are uncertainties) :

endogenous uncertainties (i.e., due to the agent) ;
exogenous uncertainties (i.e., due to the environment).

Markov Decision Processes (MDPs) are often used to model these problems of
decision-making under uncertainty.
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Mathematical MDP representation

Stochastic Shortest-Path MDP
An (SSP) MDP is a tuple (S,A,T ,C,G) where :

S is the finite set of states ;

A is the finite set of actions that the agent can execute ;

T : S × A × S → [0, 1] is the transition function, where T (s, a, s′) gives the
probability that the agent reaches state s′ if it executes action a at state s ;

C : S × A × S → R+ is the cost function where C(s, a, s′) gives the cost an
agent must pay if it reaches state s′ when executing action a at state s ;

G ⊆ S is the set of goal states.
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Existing algorithms

Objective

Find a policy π : S → A that minimizes the expected total cost to reach a goal.

Classical algorithms

Value Iteration (VI) 1

Policy Iteration (PI) 2

Prioritization methods

Generalized Prioritized Sweeping (genPS) 3

Partitioned, Prioritized, Parallel Value Iteration (P3VI) 4

1. Bellman, R. (1957). Dynamic Programming. Prentice Hall.
2. Howard, R. A. (1960). Dynamic Programming and Markov Processes. John Wiley.
3. Andre, D. et al. (1998). Generalized prioritized sweeping. Proceedings of the 10th International Conference on

Neural Information Processing Systems (p. 1001-1007). MIT Press.
4. Wingate, D. and Seppi, K. D. (2005). Prioritization methods for accelerating MDP solvers. Journal of Machine

Learning Research, 6, 851-881.
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Existing algorithms

Objective

Find a policy π : S → A that minimizes the expected total cost to reach a goal.

Heuristic approaches

Labeled Real-Time Dynamic Programming (LRTDP) 5

Improved Looped And/Or* (ILAO*) 6

Topological approaches

Topological Value Iteration (TVI) 7

Parallel-Chained Topological Value Iteration (pcTVI) 8

5. Bonet, B. and Geffner, H. (2003). Improving the Convergence of Real-Time Dynamic Programming. Proceedings
of the 13th International Conference on Automated Planning and Scheduling (ICAPS 2003) (vol. 3, p. 12-21).
6. Hansen, E. A. and Zilberstein, S. (2001). LAO* : A heuristic search algorithm that finds solutions with loops.

Artificial Intelligence, 129(1-2), 35-62.
7. Dai, P. et al. (2011). Topological value iteration algorithms. Journal of Artificial Intelligence Research, 42,

181-209.
8. Champagne Gareau, J. et al. (2023). pcTVI : Parallel MDP solver using a decomposition into independent

chains. Classification and data science in the digital age (p. 101-109). Springer International Publishing.
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Given a certain planning domain, which algorithm is faster?

For certain domains, we already know the answer :
Dense MDPs (actions can lead to a large set of states) : VI and PI are often the best ;
MDPs having a large number of goal states : heuristic approaches are often the best.
MDPs having a large number of strongly connected components : topological
approaches are often the best.

What if we have a combination of the above features?

Open research problem

“[M]ore theory is needed to guide the development and selection of such
enhancements. The most useful would be problem features and optima-
lity definitions that would indicate which metric, reordering method and
partitioning scheme are maximally effective, and which would guide the
development of new enhancements. These may include distributional
properties of the reward functions, distributional properties of transition
matrices, strongly/weakly connected component analyses, etc.” 9

9. Wingate, D. and Seppi, K. D. (2005). Prioritization methods for accelerating MDP solvers. Journal of Machine
Learning Research, 6, 851-881.
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Lack of standardized benchmarks when evaluating a new algorithm

Open research problem

The closest thing to standardized probabilistic planning benchmark domains are
those used in the International Probabilistic Planning Competition (IPPC).

Their number is relatively small.

They are mostly domains for finite horizon and infinite horizon problems, instead
of stochastic shortest-path problems.

They are not designed to cover the complete list of features of MDPs that can
influence the performance of the algorithms.

Champagne Gareau, Beaudry, Makarenkov UQAM Topologically Diverse Planning Benchmarks 15 – 19 July 2024 8 / 18



Introduction Markov Decision Processes Synthetic MDP Generation Conclusion

Objective

We need a way to generate a large set of MDPs with different features.
They could serve as training data to train a classifier.
They could serve as benchmarks to evaluate new algorithms.

Which features should we consider?

How can we generate a large set of synthetic MDPs with different features?
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Features of interest

The number of states |S| in the MDP.

The number of actions |A| in the MDP.

The number of goal states |G| in the MDP.

The number of Strongly Connected Components (SCCs) |S| in the MDP.

The number of states in the largest SCC maxS∈S |S|.
The distribution of actions :
∀k ,Pa

k := proportion of states which have k applicable actions.

The distribution of probabilistic transitions :
∀k ,P t

k := proportion of actions which have k probabilistic transitions.

The clustering coefficient : C := 1
|S|

∑
s∈S

es
ks(ks−1) , where es is the number of

pairs of states directly reachable from s that are also directly reachable from each
other, and ks is the number of states directly reachable from s. Moreover, C is set
to be 0 when ks < 2.

The goals-eccentricity of the MDP : G := ming∈G maxs∈S d̄(s, g), where d̄(s, g)
is the minimum number of actions (the cost of each action is not considered) that
must be executed to reach g from s.
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Example

|S| = 6, |A| = 7, |G| = 1 ;

S = {{s0}, {s1, s2, s3, s4}, {sg}} ;

Pa = [ 1
6 ,

3
6 ,

2
6 ] ;

Pt = [0, 4
7 ,

2
7 ,

1
7 ] ;

C = 1
6 (

2
2·1 + 0 + 0

2·1 + 3
3·2 + 0 + 0) = 1

4 ;

G = 3.
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Synthetic Graphs Generation

A small number of synthetic MDP planning domains exist, e.g. :
Layered MDPs (used to control the number of SCCs) ;
Chained MDPs (used to control the number of independent chains of states).

In comparison, there are a lot more synthetic graph generation methods.

Technique Degrees Distr. Clust. Coeff. Diameter

Erdös-Rényi Binomial small (k̄/n) small : O(log(n))
Watts-Strogatz Almost-constant large small
Barabási–Albert Scale-free (k̄−3) large (k̄−1) small : O( log(n)

log(log(n)) )

Kronecker Multinomial flexible flexible
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Determinization of an MDP
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Synthetic MDP generation

Algorithm Synthetic MDP Generation

Require: A list of desired topo. prop. (e.g., n : number of states ; k : number of goals, etc.)
Ensure: An MDP (S, A, T , C, G)

1: ▷ Use the most appropriate graph gen. technique relative to the desired topological properties
2: Γ← GENERATESYNTHETICGRAPH(n) ▷ e.g., using any graph generation techniques
3: S ← Γ.GETSTATES() ▷ |S| = n
4:
5: for all s ∈ S do
6: as ← RANDOMINT(1, ks) ▷ Generate the number of actions ; ks is the degree of s
7: As ← DECOMPINTOSUM(ks, as) ▷ As is an array of as elements s.t.

∑
na∈As

na = ks

8: for all na ∈ As do ▷ na is the number of possible transitions of the current action
9: a← new action identifier

10: A← A ∪ {a}
11: C(s, a)← RANDOMCOST() ▷ Can be sampled uniformly or with another distribution
12: Pa ← GENPROBABILITIES(na) ▷ Pa is an array s.t.

∑
p∈Pa

p = 1.0 and |Pa| = na

13: for all i ∈ [1..na] do
14: s′ ← RANDOMNEIGHBOR(Γ, s) ▷ Random neighbor of s in the graph Γ
15: T (s, a, s′)← Pa[i]
16: G ← RANDOMSUBSET(S, k) ▷ k is a parameter to control the number of goal states
17: return (S, A, T , C, G)
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Erdös-Rényi Synthetic Graph
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Corresponding Synthetic MDP
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Implementation

We implemented a project in C++, called
graph-toolkit, which contains :

the four aforementioned synthetic graph models ;
the synthetic MDP generation algorithm ;
different functions to find the topological
properties of the generated graphs/MDPs.

The project is available on GitLab 10.

10. https://gitlab.info.uqam.ca/champagne_gareau.jael/graph-toolkit
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Conclusion

We proposed a list of features that could be used to classify MDPs.

We proposed a method to generate synthetic MDPs which can cover the different
combination of features of interest.

As future work, we plan on using these synthetic MDPs to train a fast classifier
that can predict which MDP planner will be the fastest for a given MDP.
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