Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

pcTVI: Parallel MDP Solver

Using a Decomposition Into Independent Chains

Jaël Champagne Gareau Éric Beaudry Vladimir Makarenkov

Computer Science Department Université du Québec à Montréal

19 - 23 July 2022

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

Outline

1 Introduction

- 2 Markov Decision Processes
- 3 Parallel MDP solvers

4 Evaluation

5 Conclusion

Introduction	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O
Automate	d planning & scheduli	ina		

- Automated planning & scheduling is a branch of Artificial Intelligence.
- Its objective is to find plans allowing agents to reach goals.
- Some planning problems are probabilistic (i.e., there are uncertainties) :
 - endogenous uncertainties (i.e., due to the agent);
 - exogeneous uncertainties (i.e., due to the environment).
- Markov Decision Processes (MDPs) are often used to model these problems of decision-making under uncertainty.

Objective of this research

- Most interesting real-world MDP problems require a large number of state variables.
- Curse of dimensionality : Number of states is exponential in the number of state variables.
- Often we are limited in time to find the problem's solution.
- Therefore, we need to find ways to accelerate MDP computations.

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O
Mathema	tical MDP representat	tion		

- There exists many variants of MDPs. The most common are :
 - Finite-horizon MDP;
 - Infinite-horizon Discounted MDP;
 - Stochastic Shortest-Path MDP (SSP-MDP).
- We focus on SSP-MDPs, since they are more general.

Stochastic Shortest-Path MDP

An **SSP-MDP** is a tuple (S, A, T, C, G) where :

- S is the finite set of states;
- A is the finite set of actions that the agent can execute;
- $T: S \times A \times S \rightarrow [0, 1]$ is the transition function, where T(s, a, s') gives the probability that the agent reaches state s' if it executes action a at state s;
- $C: S \times A \times S \to \mathbb{R}^+$ is the cost function where C(s, a, s') gives the cost an agent must pay if it reaches state *s*' when executing action *a* at state *s*;
- $G \subseteq S$ is the set of **goal states**.

Introduction O	Markov Decision Processes ○●○○	Parallel MDP solvers	Evaluation 00000	Conclusion O
Classical	algorithms			

Policy

A (Markovian and stationnary) **policy** is a function $\pi: S \to A$ that returns, for every state, the action an agent should execute.

Value function

A value function (associated to a policy π) is a function $V^{\pi} : S \to \mathbb{R}$ that maps each state *s* to the expected total cost of an agent starting at *s* that executes the actions given by π until reaching a goal.

Classical algorithms

- Policy Iteration (PI)¹
- Value Iteration (VI)²

Champagne Gareau, Beaudry, Makarenkov UQAM

pcTVI: Parallel MDP Solver

^{1.} Howard, R. A. (1960). Dynamic Programming and Markov Processes. John Wiley.

^{2.} Bellman, R. (1957). Dynamic Programming. Prentice Hall.

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

Modern approaches

Heuristic search

- These methods assume that we have two additionnal elements :
 - 1 an initial state known a priori;
 - **2** a heuristic function $h: S \to \mathbb{R}$ estimating the expected cost to reach a goal.
- Common MDP heuristic search algorithms :
 - LAO* (ILAO*, RLAO*, BLAO*, etc.), LRTDP (BRTDP, FRTDP, etc.).

Prioritized methods

- The order of states' value update drastically influence convergence time.
- E.g., can range from $\mathcal{O}(n)$ to $\mathcal{O}(n^2)$ state updates.
- Prioritized VI (PVI) : a priority is assigned to every state.
- There's many variants with different priority function :
 - Prioritize states close to a goal (for a more efficient back-propagation of states' value);
 - Prioritize states with a large residual (farthest from convergence);
- Newer methods partition the MDP and assign priority to them rather than states.
- E.g., Topological Value Iteration (TVI), FTVI, P3VI, etc.

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

Exploiting modern computer architectures

- Another way of improving speed is to consider the architecture of modern computers, e.g. :
 - Cache memory hierarchy³;
 - GPU implementation.
 - Data-level parallelism (i.e., SIMD operations);
 - Thread-level Parallelism;
- Many considerable speedups have been obtained in other domains.
- E.g., in ML, many researches have recently provided some efficient implementations of ML techniques (specialized data structures, specialized CPU datatype (bfloat), consideration of cache, parallel decomposition, etc.).
- In MDP planning, no such elements have ever been considered.
- Our goal with this research is to propose a parallel MDP solver based on TVI.

Champagne Gareau, Beaudry, Makarenkov UQAM

^{3.} Champagne Gareau, J., Beaudry, É., & Makarenkov, V. (2022). Cache-Efficient Memory Representation of Markov Decision Processes. Proceedings of the Canadian Conference on Artificial Intelligence. https://caiac.pubpub.org/pub/pq25qiqh

Existing parallel MDP algorithms

P3VI : Partitionned, Prioritized, Parallel Value Iteration

- Partitions the state-space into multiple sub-parts;
- Assign a priority to each part;
- Solve multiple parts in parallel in the order given by the priorities.
- Disadvantages :
 - The partitionning is done on a case-by-case basis depending on the planning domain;
 - Communication of the state values between the solving threads incurs an overhead on the computational time.
- Parallel CECA (Cache-Efficient with Clustering and Annealing)
 - CECA partitions the state-space and solves the parts one-by-one according to a simulated-annealing schedule.
 - Parallel CECA solves multiple clusters in parallel.
 - Disadvantages :
 - The final algorithm is more complex to understand/implement than other MDP algorithms;
 - The performance improvement due to the parallelization is underwhelming (factor 2.59 speedup on a 10 cores CPU).

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

Parallel-Chained Topological Value Iteration

Based on Topological Value Iteration;

- Considers the graph corresponding to the topological structure of the MDP (or, equivalently, the all-outcome determinization of the MDP);
- Uses Tarjan's algorithm to decompose the graph into strongly-connected components (SCCs);
- If we consider the SCCs in reverse topological order, they can be solved using a single sweep over each of them.
- Instead of choosing SCCs to solve in parallel randomly or with a priority metric, we use instead the dependencies between the SCCs.
- SCC's with no common dependencies can be computed in parallel.
- To find the dependencies : we can do a backward breadth-first search (from the goal state) in the graph condensation of the MDP (the graph containing the SCCs of the MDP structure) to find chains of independent SCCs.
- During runtime, a new parallel task is created everytime an SCC's dependencies have all been computed.

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

troduction	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O
Algo	orithm Parallel-Chained Topo	logical Value Iteration		
1: 1	procedure PCTVI(M : MDP, t	: Number of threads)		
2:	⊳ Find the SCCs of M	,		
3:	$G \leftarrow Graph(M)$	\triangleright G implicitly shares the s	ame data structure	s as M
4:	$SCCs \leftarrow TARJAN(G)$	SCCs are found in	n reverse topologica	al order
5:				
6:	Solve in parallel indeper	ident SCCs		
7:	$G_c \leftarrow GRAPHCONDENSAT$	-ION(<i>G</i> , <i>SCCs</i>)		
8:	<i>Pool</i> ← CreateThreadF	POOL(<i>t</i>)	▷ Create t t	hreads
9:	$V \leftarrow NewValueFunctio$	N() > Arbitrarily initializ	ed; Shared by all t	hreads
10:	$Q \leftarrow CREATEQUEUE()$		Shared by all t	hreads
11:	INSERT(Q, HEAD(SCCs))	▷ The goal SC	C is inserted in the	queue
12:	while NOTEMPTY(Q) do	⊳ Only	one thread runs th	nis loop
13:	$\textit{scc} \leftarrow ExtractNext$	Iтем(<i>Q</i>)		
14:	for all neighbor ∈ NEI	GHBORS(<i>scc</i>) do		
15:	Decrement NUMING	COMINGNEIGHBORS(<i>neighb</i> e	or)	
16:	if NumIncomingNi	EIGHBORS(<i>neighbor</i>) = 0 th	ien	
17:	AssignTaskTo	AVAILABLETHREAD(Pool, PA	artialVI(<i>M</i> , <i>V</i> , <i>scc</i>	;))
18:	PUSH(<i>Q</i> , <i>scc</i>)	Neighbors of scc are re	ady to be considered	ed next
19:				
20:	return GREEDYPOLICY(V)		

Chained-MDP domain

- There was no standard probabilistic planning domain in the literature suitable to benchmark a parallel MDP solver.
- We thus propose a new parametric MDP solver, called Chained-MDP.
- The parameters are :
 - *k* : the number of independent chains c_1, c_2, \ldots, c_k ;
 - n_{scc} : the number of SCCs $scc_{i,1}$, $scc_{i,2}$, ..., $scc_{i,n_{scc}}$ in every chain c_i ;
 - n_{sps} : the number of states per SCC ;
 - \square n_a : the number of applicable actions per state;
 - n_e : the number of probabilistic effects per action.
- Successors of a state s in scc_{i,j} can be any state in scc_{i,j} or in scc_{i+1,j} (or, if the latter does not exist, it can be the goal state).

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation O●OOO	Conclusion O

Chained-MDP instance example

Figure – A chained-MDP instance where $n_c = 3$ and $n_{scc} = 4$. Each ellipse represents a SCC.

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O
Methodology				

- We compare the performance of pcTVI to the performance of :
 - VI (the asynchroneous round-robin variant);
 - LRTDP (with the admissible and domain independent *h_{min}* heuristic);
 - TVI.
- We implemented the proposed algorithms in C++.
- We used the GNU g++ compiler (version 11.2) with level 3 optimizations.
- The tests were carried out on a computer equipped with four Intel Xeon E5-2620V4 processors.
- Each of these processors have 8 cores (at 2.1 GHz), for a total of 32 cores.
- The planner never used more than 2 GB, even for the largest domain instances so memory usage of our proposed algorithm was not an issue.
- For every test instance, we measured the running time of each algorithms carried out until convergence to an ϵ -optimal value-function (we used $\epsilon = 10^{-6}$).
- For each tested parameter configurations of the parallel-chained MDP domain, we randomly generated 15 instances.
- To minimize random factors, we report the average values of the obtained results.

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

Chained-MDP with varying number of states and a fixed 32 chains

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion O

Chained-MDP with fixed 1M states and varying number of chains

Introduction O	Markov Decision Processes	Parallel MDP solvers	Evaluation 00000	Conclusion
Conclusion				

- Finding an *e*-optimal policy of an MDP can take an unreasonable amount of time due to the curse of dimensionality.
- We proposed a domain-independent way of solving an MDP in parallel.
- We also proposed a new parametric planning domain, suitable to model any sitiation where different strategies (i.e., a chain) can reach a goal but where, once commited to a strategy, it is not possible to switch to a different one.
- The pcTVI algorithm led to an average speedup of 20, on a 32 cores computer.
- As future work, we plan to :
 - investigate ways of pruning provably suboptimal actions, which would allow more SCCs to be found;
 - investigate on how to apply the proposed algorithm on the MDPs used in Reinforcement Learning (RL).

Acknowledgments

Fonds de recherche Nature et technologies Québec * *

We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC) and the Fonds de recherche du Québec — Nature et technologies (FRQNT).