
Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

pcTVI: Parallel MDP Solver
Using a Decomposition Into Independent Chains

Jaël Champagne Gareau
Éric Beaudry

Vladimir Makarenkov

Computer Science Department
Université du Québec à Montréal

19 – 23 July 2022

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 1 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Outline

1 Introduction

2 Markov Decision Processes

3 Parallel MDP solvers

4 Evaluation

5 Conclusion

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 2 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Automated planning & scheduling

Automated planning & scheduling is a branch of Artificial Intelligence.

Its objective is to find plans allowing agents to reach goals.
Some planning problems are probabilistic (i.e., there are uncertainties) :

endogenous uncertainties (i.e., due to the agent) ;
exogeneous uncertainties (i.e., due to the environment).

Markov Decision Processes (MDPs) are often used to model these problems of
decision-making under uncertainty.

Objective of this research

Most interesting real-world MDP problems require a large number of state
variables.

Curse of dimensionality : Number of states is exponential in the number of state
variables.

Often we are limited in time to find the problem’s solution.

Therefore, we need to find ways to accelerate MDP computations.

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 3 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Mathematical MDP representation

There exists many variants of MDPs. The most common are :
Finite-horizon MDP ;
Infinite-horizon Discounted MDP ;
Stochastic Shortest-Path MDP (SSP-MDP).

We focus on SSP-MDPs, since they are more general.

Stochastic Shortest-Path MDP
An SSP-MDP is a tuple (S,A,T ,C,G) where :

S is the finite set of states ;

A is the finite set of actions that the agent can execute ;

T : S × A× S → [0, 1] is the transition function, where T (s, a, s′) gives the
probability that the agent reaches state s′ if it executes action a at state s ;

C : S × A× S → R+ is the cost function where C(s, a, s′) gives the cost an
agent must pay if it reaches state s′ when executing action a at state s ;

G ⊆ S is the set of goal states.

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 4 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Classical algorithms

Policy

A (Markovian and stationnary) policy is a function π : S → A that returns, for every
state, the action an agent should execute.

Value function
A value function (associated to a policy π) is a function Vπ : S → R that maps each
state s to the expected total cost of an agent starting at s that executes the actions
given by π until reaching a goal.

Classical algorithms

Policy Iteration (PI) 1

Value Iteration (VI) 2

1. Howard, R. A. (1960). Dynamic Programming and Markov Processes. John Wiley.
2. Bellman, R. (1957). Dynamic Programming. Prentice Hall.

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 5 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Modern approaches

Heuristic search

These methods assume that we have two additionnal elements :
1 an initial state known a priori ;
2 a heuristic function h : S → R estimating the expected cost to reach a goal.

Common MDP heuristic search algorithms :
LAO* (ILAO*, RLAO*, BLAO*, etc.), LRTDP (BRTDP, FRTDP, etc.).

Prioritized methods

The order of states’ value update drastically influence convergence time.

E.g., can range from O(n) to O(n2) state updates.

Prioritized VI (PVI) : a priority is assigned to every state.
There’s many variants with different priority function :

Prioritize states close to a goal (for a more efficient back-propagation of states’ value) ;
Prioritize states with a large residual (farthest from convergence) ;

Newer methods partition the MDP and assign priority to them rather than states.

E.g., Topological Value Iteration (TVI), FTVI, P3VI, etc.

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 6 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Exploiting modern computer architectures

Another way of improving speed is to consider the architecture of modern
computers, e.g. :

Cache memory hierarchy 3 ;
GPU implementation.
Data-level parallelism (i.e., SIMD operations) ;
Thread-level Parallelism ;

Many considerable speedups have been obtained in other domains.

E.g., in ML, many researches have recently provided some efficient
implementations of ML techniques (specialized data structures, specialized CPU
datatype (bfloat), consideration of cache, parallel decomposition, etc.).

In MDP planning, no such elements have ever been considered.

Our goal with this research is to propose a parallel MDP solver based on TVI.

3. Champagne Gareau, J., Beaudry, É., & Makarenkov, V. (2022). Cache-Efficient Memory Representation of
Markov Decision Processes. Proceedings of the Canadian Conference on Artificial Intelligence.
https ://caiac.pubpub.org/pub/pq25qiqh

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 7 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Existing parallel MDP algorithms

P3VI : Partitionned, Prioritized, Parallel Value Iteration
Partitions the state-space into multiple sub-parts ;
Assign a priority to each part ;
Solve multiple parts in parallel in the order given by the priorities.
Disadvantages :

The partitionning is done on a case-by-case basis depending on the planning domain ;
Communication of the state values between the solving threads incurs an overhead on the
computational time.

Parallel CECA (Cache-Efficient with Clustering and Annealing)
CECA partitions the state-space and solves the parts one-by-one according to a
simulated-annealing schedule.
Parallel CECA solves multiple clusters in parallel.
Disadvantages :

The final algorithm is more complex to understand/implement than other MDP algorithms ;
The performance improvement due to the parallelization is underwhelming (factor 2.59 speedup
on a 10 cores CPU).

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 8 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Parallel-Chained Topological Value Iteration

Based on Topological Value Iteration ;
Considers the graph corresponding to the topological structure of the MDP (or,
equivalently, the all-outcome determinization of the MDP) ;
Uses Tarjan’s algorithm to decompose the graph into strongly-connected components
(SCCs) ;
If we consider the SCCs in reverse topological order, they can be solved using a single
sweep over each of them.

Instead of choosing SCCs to solve in parallel randomly or with a priority metric, we
use instead the dependencies between the SCCs.

SCC’s with no common dependencies can be computed in parallel.

To find the dependencies : we can do a backward breadth-first search (from the
goal state) in the graph condensation of the MDP (the graph containing the SCCs
of the MDP structure) to find chains of independent SCCs.

During runtime, a new parallel task is created everytime an SCC’s dependencies
have all been computed.

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 9 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Example of pcTVI execution

s0

s1 s2

s3 s4

s5

s6 s7

s8

sg

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 10 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Example of pcTVI execution

s0

s1 s2

s3 s4

s5

s6 s7

s8

sg

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 10 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Example of pcTVI execution

3

1

1

1

2

1

0

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 10 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Example of pcTVI execution

3

1

1

1

1

0

0

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 10 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Example of pcTVI execution

3

1

0

0

0

0

0

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 10 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Example of pcTVI execution

1

0

0

0

0

0

0

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 10 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Example of pcTVI execution

0

0

0

0

0

0

0

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 10 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Algorithm Parallel-Chained Topological Value Iteration

1: procedure PCTVI(M : MDP, t : Number of threads)
2: ▷ Find the SCCs of M
3: G← GRAPH(M) ▷ G implicitly shares the same data structures as M
4: SCCs ← TARJAN(G) ▷ SCCs are found in reverse topological order
5:

6: ▷ Solve in parallel independent SCCs
7: Gc ← GRAPHCONDENSATION(G,SCCs)
8: Pool ← CREATETHREADPOOL(t) ▷ Create t threads
9: V ← NEWVALUEFUNCTION() ▷ Arbitrarily initialized ; Shared by all threads

10: Q ← CREATEQUEUE() ▷ Shared by all threads
11: INSERT(Q, HEAD(SCCs)) ▷ The goal SCC is inserted in the queue
12: while NOTEMPTY(Q) do ▷ Only one thread runs this loop
13: scc ← EXTRACTNEXTITEM(Q)
14: for all neighbor ∈ NEIGHBORS(scc) do
15: Decrement NUMINCOMINGNEIGHBORS(neighbor)
16: if NUMINCOMINGNEIGHBORS(neighbor) = 0 then
17: ASSIGNTASKTOAVAILABLETHREAD(Pool, PARTIALVI(M,V , scc))
18: PUSH(Q, scc) ▷ Neighbors of scc are ready to be considered next
19:

20: return GREEDYPOLICY(V)

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 11 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Chained-MDP domain

There was no standard probabilistic planning domain in the literature suitable to
benchmark a parallel MDP solver.

We thus propose a new parametric MDP solver, called Chained-MDP.
The parameters are :

k : the number of independent chains c1, c2, . . . , ck ;
nscc : the number of SCCs scci,1, scci,2, . . . , scci,nscc in every chain ci ;
nsps : the number of states per SCC;
na : the number of applicable actions per state ;
ne : the number of probabilistic effects per action.

Successors of a state s in scci,j can be any state in scci,j or in scci+1,j (or, if the
latter does not exist, it can be the goal state).

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 12 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Chained-MDP instance example

S G

c1

scc1,1 scc1,2 scc1,3 scc1,4

c2

scc2,1 scc2,2 scc2,3 scc2,4

c3

scc3,1 scc3,2 scc3,3 scc3,4

Figure – A chained-MDP instance where nc = 3 and nscc = 4. Each ellipse represents a SCC.

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 13 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Methodology

We compare the performance of pcTVI to the performance of :
VI (the asynchroneous round-robin variant) ;
LRTDP (with the admissible and domain independent hmin heuristic) ;
TVI.

We implemented the proposed algorithms in C++.

We used the GNU g++ compiler (version 11.2) with level 3 optimizations.

The tests were carried out on a computer equipped with four Intel Xeon
E5-2620V4 processors.

Each of these processors have 8 cores (at 2.1 GHz), for a total of 32 cores.

The planner never used more than 2 GB, even for the largest domain instances so
memory usage of our proposed algorithm was not an issue.

For every test instance, we measured the running time of each algorithms carried
out until convergence to an ϵ-optimal value-function (we used ϵ = 10−6).

For each tested parameter configurations of the parallel-chained MDP domain, we
randomly generated 15 instances.

To minimize random factors, we report the average values of the obtained results.

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 14 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Chained-MDP with varying number of states and a fixed 32 chains

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12 14 16 18 20

R
u

n
n

in
g
 t
im

e
 (

s)

Number of states (x 100 000)

VI
LRTDP

TVI
pcTVI

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 15 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Chained-MDP with fixed 1M states and varying number of chains

 0

 50

 100

 150

 200

 250

 300

 4 8 12 16 20 24 28 32

R
u

n
n

in
g
 t
im

e
 (

s)

Number of chains

VI
LRTDP

TVI
pcTVI

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 16 / 17

Introduction Markov Decision Processes Parallel MDP solvers Evaluation Conclusion

Conclusion

Finding an ϵ-optimal policy of an MDP can take an unreasonable amount of time
due to the curse of dimensionality.

We proposed a domain-independent way of solving an MDP in parallel.

We also proposed a new parametric planning domain, suitable to model any
sitiation where different strategies (i.e., a chain) can reach a goal but where, once
commited to a strategy, it is not possible to switch to a different one.

The pcTVI algorithm led to an average speedup of 20, on a 32 cores computer.
As future work, we plan to :

investigate ways of pruning provably suboptimal actions, which would allow more SCCs
to be found ;
investigate on how to apply the proposed algorithm on the MDPs used in Reinforcement
Learning (RL).

Acknowledgments

We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC)
and the Fonds de recherche du Québec — Nature et technologies (FRQNT).

Champagne Gareau, Beaudry, Makarenkov UQAM pcTVI: Parallel MDP Solver 19 – 23 July 2022 17 / 17

	Introduction
	

	Markov Decision Processes
	

	Parallel MDP solvers
	

	Evaluation
	

	Conclusion
	

