
pcTVI: Parallel MDP Solver Using a
Decomposition Into Independent Chains

Jaël Champagne Gareau and Éric Beaudry and Vladimir Makarenkov

Abstract Markov Decision Processes (MDPs) are useful to solve real-world
probabilistic planning problems. However, finding an optimal solution in an
MDP can take an unreasonable amount of time when the number of states
in the MDP is large. In this paper, we present a way to decompose an MDP
into Strongly Connected Components (SCCs) and to find dependency chains
for these SCCs. We then propose a variant of the Topological Value Iteration
(TVI) algorithm, called parallel chained TVI (pcTVI), which is able to solve
independent chains of SCCs in parallel leveraging modern multicore computer
architectures. The performance of our algorithm was measured by comparing
it to the baseline TVI algorithm on a new probabilistic planning domain
introduced in this study. Our pcTVI algorithm led to a speedup factor of 20,
compared to traditional TVI (on a computer having 32 cores).

Keywords: Markov Decision Process, Automated Planning, Strongly Con-
nected Components, Dependancy Chains, Parallel Computing

1 Introduction

Automated planning is a branch of Artificial Intelligence (AI) aiming at find-
ing optimal plans to achieve goals. One example of problems studied in au-
tomated planning is the electric vehicle path-planning problem [1]. Planning
problems with non-deterministic actions are known to be much harder to

Jaël Champagne Gareau
Université du Québec à Montréal, Canada, e-mail: champagne_gareau.jael@uqam.ca

Éric Beaudry
Université du Québec à Montréal, Canada, e-mail: beaudry.eric@uqam.ca

Vladimir Makarenkov
Université du Québec à Montréal, Canada, e-mail: makarenkov.vladimir@uqam.ca

1

2 Champagne Gareau et al.

solve. Markov Decision Processes (MDPs) are generally used to solve such
problems leading to probabilistic models of applicable actions [2].

In probabilistic planning, a solution is generally a policy, i.e., a mapping
specifying which action should be executed in each observed state to achieve
an objective. Usually, dynamic programming algorithms such as Value Iter-
ation (VI) are used to find an optimal policy [3]. Since VI is time-expensive,
many improvements have been proposed to find an optimal policy faster, us-
ing for example the Topological Value Iteration (TVI) algorithm [4]. However,
very large domains often remain out of reach. One unexplored way to reduce
the computation time of TVI is by taking advantage of the parallel architec-
ture of modern computers and by decomposing an MDP into independent
parts which could be solved concurrently.

In this paper, we show that state-of-the-art MDP planners such as TVI
can run an order of magnitude faster when considering task-level parallelism
of modern computers. Our main contributions are as follows:

� An improved version of the TVI algorithm, parallel-chained TVI (pcTVI),
which decomposes MDPs into independent chains of strongly connected
components and solves them concurrently.

� A new parametric planning domain, chained-MDP, and an evaluation of
pcTVI’s performance on many instances of this domain compared to the
VI, LRTDP [5] and TVI algorithms.

2 Related Work

Many MDP solvers are based on the Value Iteration (VI) algorithm [3], or
more precisely on asynchronous variants of VI. In asynchronous VI, MDP
states can be backed up in any order and don’t need to be considered the
same number of times. One way to take advantage of this is by assigning a
priority to every state and by considering them in priority order.

Several state-of-the-art MDP algorithms have been proposed to increase
the speed of computation. Many of them are able to focus on the most promis-
ing parts of MDP through heuristic search algorithms such as LRTDP [5] or
LAO* [6]. Some other MDP algorithms use partitioning methods to decom-
pose the state-space in smaller parts. For example, the P3VI (Partitioned,
Prioritized, Parallel Value Iteration) algorithm partitions the state-space,
uses a priority metric to order the partitions in an approximate best solving
order, and solves them in parallel [7]. The biggest disadvantage of P3VI is
that the partitioning is done on a case-by-case basis depending on the plan-
ning domain, i.e., P3VI does not include a general state-space decomposition
method. The inter-process communication between the solving threads also
incurs an overhead on the computation time. The more recent TVI (Topo-
logical Value Iteration) algorithm [4] also decomposes the state-space, but
does it by considering the topological structure of the underlying graph of

pcTVI: Parallel MDP Solver 3

the MDP, making it more general than P3VI. Unfortunately, to the best of
our knowledge, no parallel version of TVI has been proposed in the literature.

3 Problem Definition

There exist different types of MDP, including Finite-Horizon MDP, Infinite-
Horizon MDP and Stochastic Shortest Path MDP (SSP-MDP) [2]. The first
two of them can be viewed as special cases of SSP-MDP [8]. In this work, we
focus on SSP-MDPs, which we describe formally in Definition 1 below.

Definition 1 A Stochastic Shortest Path MDP (SSP-MDP) is given by a
tuple (S,A, T,C,G), where:

� S is a finite set of states;
� A is a finite set of actions;
� T : S × A × S → [0, 1] is a transition function, where T (s, a, s′) is the

probability of reaching state s′ when applying action a while in state s;
� C : S×A → R+ is a cost function, where C(s, a) gives the cost of applying

the action a while in state s;
� G ⊆ S is the set of goal states (which can be assumed to be sink states).

We generally search for a policy π : S → A that tells us which action should
be executed at each state, such that an execution following the actions given
by π until a goal is reached has a minimal expected cost. This expected cost
is given by a value function V π : S → R. The Bellman Optimality Equations
are a system of equations satisfied by any optimal policy.

Definition 2 The Bellman Optimality Equations are the following:

V (s) =

0, if s ∈ G,

min
a∈A

[
C(s, a) +

∑
s′∈S

T (s, a, s′)V (s)
]
, otherwise.

The expression between square brackets is called the Q-value of a state-action
pair:

Q(s, a) = C(s, a) +
∑
s′∈S

T (s, a, s′)V (s).

When an optimal value function V ⋆ has been computed, an optimal policy
π⋆ can be found greedily:

π⋆(s) = argmina∈AQ
⋆(s, a).

Most MDP solvers are based on dynamic programming algorithms like
Value Iteration (VI), which update iteratively an arbitrarily initialized value
function until convergence with a given precision ϵ. In the worst case, VI needs
to do |S| sweeps of the state space, where one sweep consists in updating the

4 Champagne Gareau et al.

value estimate of every state using the Bellman Optimality Equations. Hence,
the number of state updates (called a backup) is O(|S|2). When the MDP
is acyclic, most of these backups are wasteful, since the MDP can in this
situation be solved using only |S| backups (ordered in reverse topological
order), thus allowing one to find an optimal policy in O(|S|) [8].

4 Parallel-Chained TVI

In this section, we describe an improvement to the TVI algorithm, named
pcTVI (Parallel-Chained Topological Value Iteration), which is able to solve
an MDP in parallel (as P3VI). pcTVI uses the decomposition proposed by
TVI, known to give good performance on many planning domains. We start
by summarizing how the original TVI algorithm works.

First, TVI uses Kosaraju’s graph algorithm on a given MDP to find the
strongly connected components (SCCs) of its graphical structure (the graph
corresponding to its all-outcomes determinization).The SCCs are found by
Kosaraju’s algorithm in reverse topological order, which means that for every
i < j, there is no path from a state in the ith SCC to a state in the jth SCC.
This property ensures that every SCC can be solved separately by VI sweeps
if previous SCCs (according to the reverse topological order) have already
been solved. The second step of TVI is thus to solve every SCC one by one
in that order. Since TVI divides the MDP in multiple subparts, it maximizes
the usefulness of every state backup by ensuring that only useful information
(i.e., converged state values) is propagated through the state-space.

Unfortunately, TVI can only solve one SCC at a time. Since modern com-
puters have many computing units (cores) which can work in parallel, we
could theoretically solve many SCCs in parallel to greatly reduce computa-
tion time. Instead of choosing SCCs to solve in parallel arbitrarily or using a
priority metric (as in P3VI), which incur a computational overhead to prop-
agate the values between the threads, we want to consider their topological
order (as in TVI) to minimize redundant or useless computations. One way to
share the work between the processes is to find independent chains of SCCs
which can be solved in parallel. The advantage of independent chains is that
no coordination and communication is needed between the SCCs, which both
removes some running-time overhead and simplifies the implementation.

The Parallel-Chained TVI algorithm we propose (Algorithm 1) works as
follows. First, we find the graph G corresponding to the graphical structure
of the MDP, decompose it into SCCs, and find the reverse topological order
of the SCCs (as in TVI, but we use Tarjan’s algorithm instead of Kosaraju’s
algorithm since it is about twice as fast). We then build the condensation
of the graph G, i.e., the graph Gc whose vertices are SCCs of G, where an
edge is present between two vertices scc1 and scc2 if there exists an edge in
G between a state s1 ∈ scc1 and a state s2 ∈ scc2. We also store the reversed
edges in Gc and a counter cscc on every vertex scc which indicates how many

pcTVI: Parallel MDP Solver 5

incoming neighbors have not yet been computed. We use this (usually small)
graph Gc to detect which SCCs are ready to be considered (the SCCs whose
incoming neighbors have all been determined with precision ϵ, i.e., the SCCs
whose associated counter cscc is 0). When a new SCC is ready, it is inserted
into a work queue from which the waiting threads acquire their next task.

Algorithm 1 Parallel-Chained Topological Value Iteration

1: procedure pcTVI(M : MDP, t: Number of threads)
2: ▷ Find the SCCs of M
3: G← Graph(M) ▷ G implicitly shares the same data structures as M
4: SCCs← Tarjan(G) ▷ SCCs are found in reverse topological order
5:
6: ▷ Build the graph of SCCs of G
7: Gc ← GraphCondensation(G,SCCs)
8:
9: ▷ Solve in parallel independent SCCs
10: Pool← CreateThreadPool(t) ▷ Create t threads
11: V ← NewValueFunction() ▷ Arbitrarily initialized; Shared by all threads
12: Q← CreateQueue() ▷ Shared by all threads
13: Insert(Q,Head(SCCs)) ▷ The goal SCC is inserted in the queue
14: while NotEmpty(Q) do ▷ Only one thread runs this loop
15: scc← ExtractNextItem(Q)
16: for all neighbor ∈ Neighbors(scc) do
17: Decrement NumIncomingNeighbors(neighbor)
18: if NumIncomingNeighbors(neighbor) = 0 then
19: AssignTaskToAvailableThread(Pool,PartialVI(M,V, scc))
20: Push(Q, scc) ▷ Neighbors of scc are ready to be considered next

21:
22: ▷ Compute and return an optimal policy using the computed value function
23: Π ← GreedyPolicy(V)
24: return Π

5 Empirical Evaluation

In this section, we evaluate empirically the performance of pcTVI, comparing
it to the three following algorithms: (1) VI – the standard dynamic pro-
gramming algorithm (here we use its asynchronous round-robin variant),
(2) LRTDP – a well-known heuristic search algorithm, and (3) TVI – the
Topological Value Iteration algorithm described in Section 4. In the case of
LRTDP, we carried out the admissible and domain-independent hmin heuris-
tic, first described in the original paper introducing LRTDP [5]:

hmin(s) =

0, if s ∈ G.

min
a∈As

[
C(s, a) + min

s′∈succa(s)
V (s′)

]
, otherwise,

6 Champagne Gareau et al.

where As denotes the set of applicable actions in state s and succa(s) is the
set of successors when applying action a at state s. The four competing al-
gorithms (VI, TVI, LRTDP and pcTVI) were implemented in C++ by the
authors of this paper and compiled using the GNU g++ compiler (version
11.2). All tests were performed on a computer equipped with four Intel Xeon
E5-2620V4 processors (each of them having 8 cores at 2.1 GHz, for a to-
tal of 32 cores). For every test domain, we measured the running time of
the four compared algorithms carried out until convergence to an ϵ-optimal
value function (we used ϵ = 10−6). Every domain was tested 15 times with
randomly generated MDP instances. To minimize random factors, we report
the median values obtained over these 15 MDP instances.

Since there is no standard MDP domain in the scientific literature suit-
able to benchmark a parallel MDP solver, we propose a new general para-
metric MDP domain that we use to evaluate the algorithms. This domain,
which we call chained-MDP, uses 5 parameters: (1) k, the number of inde-
pendent chains {c1, c2, . . . , ck} in the MDP; (2) nscc, the number of SCCs
{scci,1, scci,2, . . . , scci,nscc} in every chain ci; (3) nsps, the number of states
per SCC; (4) na the number of applicable actions per state, and (5) ne the
number of probabilistic effects per action. The possible successors succ(s) of
a state s in scci,j are states in scci,j and either the states in scci,j+1 if it
exists, or the goal state otherwise. When generating the transition function
of a state-action pair (s, a), we sampled ne states uniformly from succ(s)
with random probabilities. In each of our tests, we used nscc = 2, na = 5 and
ne = 5. A representation of a Chained-MDP instance is shown in Figure 1.

S A

c1

scc1,1 scc1,2 scc1,3 scc1,4

c2

scc2,1 scc2,2 scc2,3 scc2,4

c3

scc3,1 scc3,2 scc3,3 scc3,4

Fig. 1 A chained-MDP instance where nc = 3 and nscc = 4. Each ellipse represents
a strongly connected component.

Figure 2 presents the obtained results for the Chained-MDP domain when
varying the number of states and fixing the number of chains (32). We can
observe that when the number of states is small, pcTVI does not provide
an important advantage over the existing algorithms since the overhead of
creating and managing the threads is taking most of the possible gains. How-
ever, as the number of states increases, the gap in the running time between

pcTVI: Parallel MDP Solver 7

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12 14 16 18 20

R
u
n
n
in

g
 t
im

e
 (

s)

Number of states (x 100 000)

VI
LRTDP

TVI
pcTVI

Fig. 2 Average running times (in s) for the Chained-MDP domain with varying
number of states and fixed number of chains (32).

 0

 50

 100

 150

 200

 250

 300

 4 8 12 16 20 24 28 32

R
u
n
n
in

g
 t
im

e
 (

s)

Number of chains

VI
LRTDP

TVI
pcTVI

Fig. 3 Average running times (in s) for the Chained-MDP domain with varying
number of chains and fixed number of states (1M).

pcTVI and the three other algorithms increases. This indicates that pcTVI
is particularly useful on very large MDPs, which are usually needed when
considering real-world domains.

Figure 3 presents the obtained results for the same Chained-MDP domain
when varying the number of chains and fixing the number of states (1M).
When the number of chains increases, the total number of SCCs implicitly
increases (which also implies the number of states per SCC decreases). This
explains why each tested algorithms becomes faster (TVI becomes faster by
design, since it solves SCCs one-by-one without doing useless state backups,
and VI and LRTDP become faster due to an increased locality of the consid-
ered states in memory, which improves cache performance). The performance
of pcTVI increases as the number of chains increases (for the same reason
as the others algorithms, but also due to increased parallelization opportu-

8 Champagne Gareau et al.

nities). We can also observe that for domains with 4 chains only, pcTVI still
clearly outperforms the other methods. This means that pcTVI does not need
a highly parallel server CPU and can be used on standard 4-core computer.

6 Conclusion

The main contributions of this paper are two-fold. First, we presented a new
algorithm, pcTVI, which is, to the best of our knowledge, the first MDP solver
that takes into account both the topological structure of the MDP (as in TVI)
and the parallel capacities of modern computers (as in P3VI). Second, we in-
troduced a new parametric planning domain, Chained-MDP, which models
any situation where different strategies (corresponding to a chain) can reach
a goal, but where, once committed to a strategy, it is not possible to switch
to a different one. This domain is ideal to evaluate the parallel performance
of an MDP solver. Our experiments indicate that pcTVI outperforms the
other competing methods (VI, LRTDP, and TVI) on every tested instance
of the Chained-MDP domain. Moreover, pcTVI is particularly effective when
the considered MDP has many SCC chains (for increased parallelization op-
portunities) of large size (for decreased overhead of assigning small tasks to
the threads). As future work, we plan to investigate ways of pruning prov-
ably suboptimal actions, which would allow more SCCs to be found. While
this paper focuses on the automated planning side of MDPs, the proposed
optimization and parallel computing approaches could also be applied when
using MDPs with Reinforcement Learning and other ML algorithms.

Acknowledgements This research has been supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and the Fonds de Recherche du
Québec — Nature et Technologies (FRQNT).

References

1. Champagne Gareau, J., Beaudry E., Makarenkov, V.: A Fast Electric Vehicle
Planner Using Clustering. In: Stud. in Classif., Data Anal., and Knowl. Organ.,
vol. 5, pp. 17–25. Springer (2021)

2. Mausam, Kolobov, A.: Planning with Markov Decision Processes: An AI Per-
spective. Morgan & Claypool (2012)

3. Bellman, R.: Dynamic Programming. Prentice Hall (1957)
4. Dai, P., Mausam, Weld, D., Goldsmith, J.: Topological value iteration algo-

rithms. J. Artif. Intell. Res., vol. 42, pp. 181–209 (2011)
5. Bonet, B., Geffner, H.: Labeled RTDP: Improving the Convergence of Real-Time

Dynamic Programming, In: Proc. of ICAPS, pp. 12–21 (2013)
6. Hansen, E., Zilberstein, S.: LAO*: A heuristic search algorithm that finds solu-

tions with loops, Artif. Intell., vol. 129, no. 1–2, pp. 35–62 (2001)
7. Wingate, D., Seppi, K.: P3VI: A partitioned, prioritized, parallel value iterator.

In: Proc. of the Int. Conf. on Mach. Learn. (ICML), pp. 863–870 (2004)
8. Bertsekas, D.: Dynamic programming and optimal control, vol. 2. Athena scien-

tific Belmont, MA (2001)

