Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation	Conclusion
0000000	00	00000	000	

A fast electric vehicle planner using clustering

A new speedup technique to find electric vehicle shortest paths

Jaël Champagne Gareau Éric Beaudry Vladimir Makarenkov

Computer Science Department Université du Québec à Montréal

August 28th, 2019

Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation 000	Conclusion O
Outline				

- 1 Motivation: Why an EV Planner
- 2 Base planner
- 3 Grouping stations into clusters

4 Evaluation

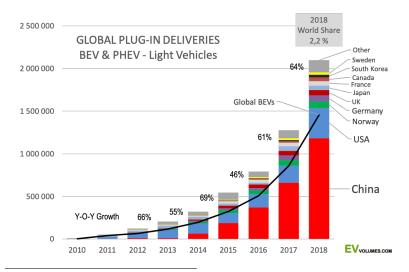
5 Conclusion

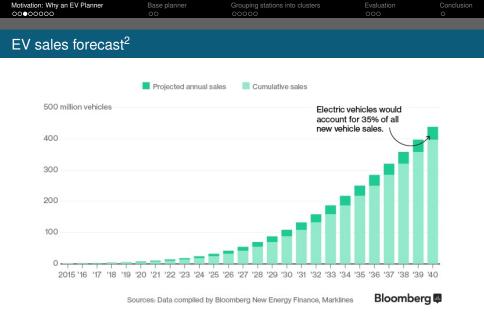
Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation	Conclusion
0000000				

Advantages of EV over conventional vehicles

Less pollution

Less noisy


Cheaper in the long run


Less maintenance

Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation	Conclusion
0000000				

Global EV market 2010–2018¹

¹ http://www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes/

²Bloomberg, February 25th, 2016, https://www.bloomberg.com/features/2016-ev-oil-crisis/

Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation	Conclusion
0000000	00	00000	000	

Comparison between a conventional vehicle and an EV

	Honda Civic	Nissan Leaf
Price	20 000 \$	36 000 \$ ³
Range	750 km	242 km
Refueling/Charging time	3 min	30 min
Gas/Charging stations ⁴	2924	115

⁴In Québec in 2018

³Excluding governmental subsidies

Motivation: Why an EV Planner	Base planner 00	Grouping stations into clusters	Evaluation 000	Conclusion O
Research problem				

- - The number of EV is increasing;
 - The number of charging stations is increasing;
 - Many paths need recharges to be feasible.

Objective

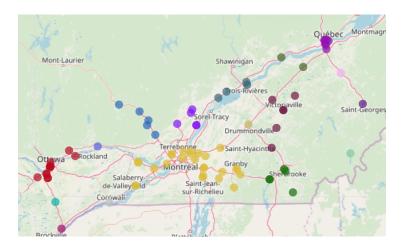
The objective is to have an EV planner that:

- considers intermediate recharges at charging stations;
- 2 fastly computes an optimal path.

Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation	Conclusion
00000000	00	00000	000	

Example of an optimal plan

Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation 000	Conclusion O
Existing technique	s			


- Use of the Energy-A* algorithm for EV travel. Considers the recharge of the battery by regenerative braking, but does not consider charging stations⁵.
- EV planning considering charging stations⁶.

⁵Sachenbacher, M., M. Leucker, A. Artmeier and J. Haselmayr (2011). Efficient Energy-Optimal Routing for Electric Vehicles. In Proceedings of the AAAI, pp. 1402–1407. AAAI Press.

⁶Baouche, F., R. Billot, R. Trigui and N. E. El Faouzi (2014). Efficient allocation of electric vehicles charging stations. IEEE-ITSM 6(3), 33–43.

Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation	Conclusion
0000000				

Idea: Grouping nearby stations into clusters

Motivation: Why an EV Planner	Base planner ●O	Grouping stations into clusters	Evaluation 000	Conclusion O
Formalism				

Road map

The map is represented by an oriented valued graph (V, E, τ) and by a set S where:

- V is the set of locations considered on the map (nodes);
- E is the set of road segments (edges);
- $\lambda \colon E \to \mathbb{R}^+$ gives the length of the edges;
- S is the set of charging stations (we assume that $S \subseteq V$).

Motivation: Why an EV Plan	ner Base planner • O	Grouping stations into clusters	Evaluation 000	Conclusion O

Formalism

Road map

The map is represented by an oriented valued graph (V, E, τ) and by a set S where:

- V is the set of locations considered on the map (nodes);
- E is the set of road segments (edges);
- $\lambda: E \to \mathbb{R}^+$ gives the length of the edges;
- S is the set of charging stations (we assume that $S \subseteq V$).

EV planning

An EV planning problem is defined by the tuple $(M, \rho, \alpha, \omega)$ where:

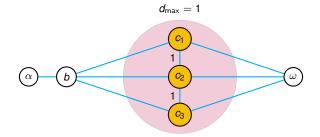
- M is the road map;
- $\rho \in \mathbb{R}^+$ is the EV range (in km);
- $\alpha, \omega \in V$ are the departure and arrival nodes.

Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation	Conclusion
	00			

Base algorithm

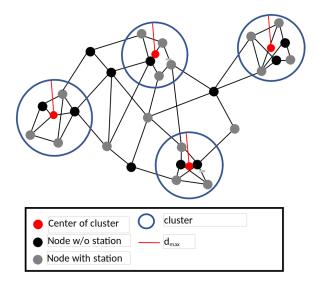
Algorithm

To find the most time-efficient EV plan from α to ω :


- A matrix of the distances between charging stations is precomputed;
- The distance between every stations to α, and between ω to every stations are computed (Dijkstra's algorithm performed twice);
- A complete graph (V', E') is constructed, where $V' = S \cup \{\alpha, \omega\}$.
- Edges longer than ρ are removed from the graph;
- A* algorithm is executed from α to ω on the new graph.

The asymptotic time complexity is $O(|V| \log |V| + |E|)$.

Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation 000	Conclusion O
The idea				


Regroup close stations into a single node;

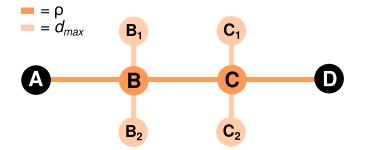
Consider a parameter $d_{max} \in \mathbb{R}$ representing the radius of the generated clusters.

Motivation: Why an EV Planner	Base planner OO	Grouping stations into clusters	Evaluation	Conclusion O

Example of the resulting graph

Motivation: Why an EV Planner	Base planner OO	Grouping stations into clusters	Evaluation 000	Conclusion O
Clustering charging	g stations			

Algorithm Clustering charging stations on the map	
1: Find the two closest charging stations $s_1, s_2 \in S$	
2: while distance $(s_1, s_2) \leq d_{max}$ do	
Find the node <i>m</i> that is midway between s_1 and s_2	
4: Find $C = \{s \in S dist(s, m) \leq d_{max}\}$	$\triangleright \textit{s}_1, \textit{s}_2 \in \textit{C}$
5: $S \leftarrow (S \setminus C) \cup \{m\}$	
6: Find the two closest charging stations $s_1, s_2 \in S$	
7: end while	


Time complexity: $\mathcal{O}(\mathcal{K}(|S|^2 + |V|))$ (where *K* is the number of generated clusters)

Motivation: Why an EV Planner	Base planner 00	Grouping stations into clusters	Evaluation 000	Conclusion O
Clustering chargir	ng stations —	A problem		

Adjusting the considered range

For the path returned by the planner to be feasible, the considered range must be:

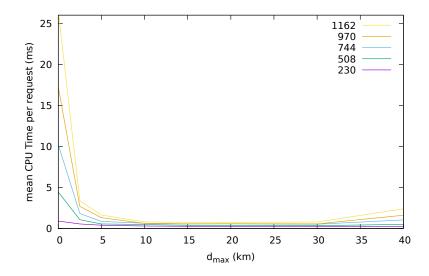
- $R' = R d_{max}$ for the first and last clusters;
- $\blacksquare R' = R 2d_{\max}$ between clusters.

Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation	Conclusion
0000000	00	00000	000	0

Complete planner

Algorithm EV Path-Planner including charging stations clustering

1: Generate the charging stations clustering


- using Algorithm 1
- 2: Compute the matrix D of pairwise distance between clusters' center
- 3: Construct the complete s-graph (S, E_S)
- 4: for each request (ρ, α, ω) do
- 5: Execute Dijkstra from α on the original graph
- 6: Execute Dijkstra from ω on the transposed graph
- 7: Add α and ω to the s-graph including edges of length $\leq \rho$
- 8: Execute A* on the s-graph from α to ω
- 9: if the returned path is not feasible then > Amortized strategy
- 10: Execute A* on the s-graph (without clusters) from α to ω
- 11: end if
- 12: Find the complete path from the path in the s-graph
- 13: end for

Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation •00	Conclusion O
Testing methodolo	ogy			

- The real map data comes from the OpenStreetMap project.
- The territory used is the Quebec province, Canada:
 - 2 580 388 nodes
 - 5 225 348 edges
 - 1162 charging stations
- 1000 requests:
 - EV range between 100 and 550 km
 - Travel distance between 200 and 1500 km

Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation	Conclusion
			000	

Results 1/2: Graph of the CPU time vs the d_{max} parameter

Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation	Conclusion
			000	

Results 2/2: Table showing the impact of clustering

Param	eters	Clus	ters	Base	version	Amortiz	ed version
Stations	d_{\max}	Clusters	JDIR	FR	СТ	FR	СТ
#	km	#	%	%	ms	%	ms
1162	0.0	1162	0.0	0.0	26.563	0	26.563
1162	2.5	487	0.0	0.0	3.385	0	3.385
1162	5.0	342	0.2	0.4	1.541	0	1.647
1162	10.0	236	0.2	0.8	0.588	0	0.801
1162	15.0	188	0.6	0.9	0.523	0	0.762
1162	20.0	150	1.0	1.4	0.382	0	0.754
1162	30.0	111	2.3	2.0	0.265	0	0.796
1162	40.0	87	2.8	8.2	0.226	0	2.404

JDIR: Journey duration increase rate; FR: Failure rate; CT: Computation time

Motivation: Why an EV Planner	Base planner	Grouping stations into clusters	Evaluation 000	Conclusion
Conclusion				

- Finding the optimal solution for EV Path-Planning has a high computational cost;
- We presented a planner that uses graph clustering as a speedup technique;
- Our technique decreased by a factor of 35 the mean time of computation.

Questions ?

We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC) and the Fonds de recherche du Québec — Nature et technologies (FRQNT).