
Introduction Base Optimal Planner Contributions Evaluation Conclusion

Fast and Optimal Planner for the Discrete Grid-Based
Coverage Path-Planning Problem

Using a state-space pruning algorithm with an admissible heuristic function

Jaël Champagne Gareau
Éric Beaudry

Vladimir Makarenkov

Computer Science Department
Université du Québec à Montréal

November 25–27, 2021

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 1 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Outline

1 Introduction
What is Coverage Path-Planning
Existing approaches
Research problem

2 Base Optimal Planner

3 Contributions
Loop detection
Admissible heuristic

4 Evaluation

5 Conclusion

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 2 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

What is Coverage Path-Planning

Coverage Path-Planning

The Coverage Path-Planning (CPP) problem is a motion planning problem, a
branch of research that originally comes from robotics.

Objective : Find a minimal sequence of actions that allows an agent to pass over
all points of an area or a volume of interest.
Applications :

robotic vaccum cleaners ;
3d printing ;
minesweeping ;
underwater autonomous vehicles (AUVs) ;
search and rescue ;
etc.

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 3 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

What is Coverage Path-Planning

CPP variants

Type of environment : 2D or 3D, discrete or continuous, etc.

Allowed movements : Rectilinear, curved, etc.

Type of planner : offline or online

Sensors : camera, lidar, bumper, etc.

Number of agent : single or cooperative planning

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 4 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Existing approaches

CPP in continuous environments

Discretize the environment :
simple ;
can take a lot of memory depending on the resolution.

Decompose the environment into cells :
partitioning of the environement into simple and disjoint regions ;
every cell is represented by a node in an adjacency graph ;
the problem then becomes :

1 find a good cell decomposition of the environment ;
2 find the optimal order of visit of the cells ;
3 cover every cell with simple movements (e.g., straight lines).

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 5 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Existing approaches

CPP in discrete environments – Representation

Grid-based representation :
simple and contiguous storage in memory ;
wavefront algorithm.

Minimum-Spanning-Tree-based representation :
online planning ;
the agent cover the environment by following the edges of the tree.

Graph-based representation :
ideal for representating road networks ;
can consider environmental constraints ;
there is an anytime algorithm.

Neural-Network-based representation :
every cell is a neuron connected to 8 neurons (neighboring cells) ;
ideal for unknown or dynamic environments.

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 6 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Existing approaches

CPP in discrete environments – Wavefront algorithm

Points of departure and arrival are given (they can be the same) ;

A wave is propagated from the arrival ;

The agent always visit unexplored neighbors with the highest number first (farthest
from the arrival) ;

No guarantee of optimality ;

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 7 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Research problem

Research problem

Among all CPP planners in the literature, none is optimal in the general case ;

CPP is an NP-Hard problem : a general optimal solver is Ω(bn) ;

However, some techniques can be used to improve empirical performance.

Objective

In this research, our objective was to propose, implement and evaluate two ways to
increase the computational speed of an optimal discrete CPP solver :

Branch-and-bound pruning of unpromising subtrees.

Use of a novel admissible heuristic function.

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 8 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Problem representation

The 2D discrete environment :
is represented by a matrix G = (gij)m×n ;
gij indicate if the cell is accessible (to be covered) or inaccessible.

The agent :
is the entity doing the coverage of the region ;
has a position p = (i, j) on the grid ;
can do one of the four actions {Up,Down, Left,Right} at each timestep.

A state in the state-space is defined by a tuple s = (is, js,R), where :
(is, js) is the current position of the agent ;
R = {(i, j)| position (i, j) is accessible and not yet explored}.

Figure – Example of a CPP discrete environment

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 9 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Solution to the discrete CPP problem

An instance of the CPP problem is a tuple (G, s0) where :
G is (a matrix representing) an environment ;
s0 = (i0, j0,R0) is the initial state.

A solution to such a CPP instance is :
an ordered list of actions (i.e., a plan) π = 〈a1, a2, . . . , ak 〉 ;
the actions move the agent through positions 〈(i0, j0), (i1, j1), . . . , (ik , jk)〉 ;
the set of goal states is {(i, j,∅)|(i, j) is any valid position}

Objective of the optimal CPP problem

Let Π be the set of solutions (plans) of a CPP problem instance. The goal of the CPP
problem is to find an optimal solution π? = arg minπ∈Π |π|, i.e., a minimal ordered list
of actions leading the agent from the initial state to one of the goal states.

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 10 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Graph search algorithms

The state-space can be represented by a graph.
Note : the number of states in the graph is exponentially larger than the problem grid.

Finding an optimal solution of CPP is equivalent to finding a shortest path in the
graph from the initial state to a goal state.
Candidate algorithms :

Breadth-First Search (BFS) :
needs in the worst case to store the complete state-space in memory ;
takes too much memory even for very small grids ;
algorithms based on BFS (e.g., Dijkstra, A?, etc.) can thus not be used.

Depth-First Search (DFS) :
can go arbitrarily deep in the search tree, even when the solution is close to the root ;
can get stuck by expanding the same nodes indefinitely.

Algorithm used in our base planner

We based our planner on Iterative Deepening Depth-First Search (ID-DFS).

ID-DFS is similar to DFS, but with a depth limit.

If a solution is not found within depth limit k , DFS is carried out again with a depth
limit k + 1 and continues until a solution is found.

Ensures the algorithm never goes deeper than necessary and always terminates
(if a solution exists).

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 11 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Base planner

Algorithm CPP planner based on ID-DFS

1: global
2: π? : data-structure (eventually) containing the solution
3: s = (is, js,R) : current agent position
4: procedure ID-DFS-PLAN()
5: for k ← |R0| to∞ do . k is the depth limit
6: found ← ID-DFS-HELPER(k , 0)
7: if found then return
8: procedure ID-DFS-HELPER(k : depth-limit, d : current depth) : boolean
9: if k = d then return |R| = 0 . returns true iff the grid is fully covered

10: for all applicable action a do
11: move agent by executing action a
12: found ← ID-DFS-HELPER(k , d + 1)
13: if found then
14: add a at the start of solution π? . π? is found in reverse order
15: return true
16: else
17: backtrack one step in the search tree . undo last move
18: return false

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 12 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Loop detection

State-space pruning

The base planner finds optimal solutions.

However, it explores some unpromising branches in the search tree.

By pruning unpromising parts of the search tree, we can greatly improve the
planner’s performance.

Start

N1

N11 N12 N13 N14

N2 N3 N4

N41 N42

Figure – Example of state-space pruning. Explored, pruned and goal states are respectively blue, red and green.

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 13 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Loop detection

Loop detection

One type of unpromising subtree occurs when visiting an already visited cell (i, j)
without having explored other cells since last visit to (i, j).

It manifests as a loop in the state-space.

Since every action has an opposite action (Up-Down, Left-Right), loops are really
frequent.

CPP loop detection with the base planner

We detect these loops and prune their respective subtrees by :
introducing a new matrix M = (mij)m×n ;
mij is the number of grid cells that remained to be covered the last time the agent was in
position (i, j) ;
the base planner is modified to consider and update M ;
after every action, if the agent is in position (i, j), a condition checks whether mij < |R| ;
when the condition is false, a loop is found and the subtree is pruned.

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 14 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Admissible heuristic

Admissible heuristic

A heuristic function h : S → N is a function that gives an estimate on the cost
(number of actions) needed to move from a given state s ∈ S to a goal state.

In AI planning, they are often used to focus a search in promising parts of a
state-space and to prune (or ignore) unpromising parts.

An admissible heuristic function is a heuristic function that never overestimates
the number of actions needed to reach a goal state.

There was no heuristic function proposed in the literature for the CPP problem.
In the CPP problem, such a heuristic function can be used in two ways :

1 When the number of remaining permitted moves is larger than the minimal number of
remaining moves, we know the subtree can be pruned.

2 The successors of a state can be ordered by how much promising they are (the lower
the heuristic value of a successor, the most promising it is).

Our heuristic function computes the minimal number of times that each of the four
actions (go up, go down, go left, go right) need to be used.

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 15 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Admissible heuristic

Proposed heuristic – Example

Heuristic computation example

In the figure below, three cells remain to be covered.

Action "go left" needs to be used at least 4 times to reach A, 3 times to reach B
and 0 time to reach C, it must thus be used at least max(4,3,0) = 4 times.

In total, the number of remaining actions is at least 4 + 2 + 2 + 1 = 9.

14 actions are needed to find the optimal solution for this problem.

We can get a tighter bound by observing that every move in one direction
increases the number of required moves in the opposite direction.

We obtain h(s) = 4 + 2 + min(4, 2) + 2 + 1 + min(2, 1) = 12.

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 16 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Admissible heuristic

Proposed heuristic – Pseudo-code

Algorithm Heuristic cost computation

1: procedure MIN-REMAINING-MOVES((i, j,R) : a state) : positive integer
2: left , right , up, down← 0 . Variables initialization
3: for all (ri , rj) ∈ R do . Loop on every remaining grid cell to cover
4: if ri < i then . The uncovered cell is above
5: up = max(up, i − ri)
6: else down = max(down, ri − i) . The uncovered cell is below
7: if rj < j then . The uncovered cell is to the left
8: left = max(left , j − rj)
9: else right = max(right , rj − j) . The uncovered cell is to the right

10: return left + right + min(left , right) + up + down + min(up, down)

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 17 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Methodology

We implemented the proposed algorithms in C++.

The tests were carried out on a PC computer equipped with an Intel Core i5 7600k
processor.

The planner never used more than 10 MB, so memory usage of our proposed
planners was not an issue.

There was no standard set of benchmark environments available in the literature,
so we proposed four different types of generated environments.

To measure the computation performance, we ran each algorithm 50 times on the
same test grids and took the median of the obtained results.

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 18 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Types of generated CPP instances used in our benchmark

(a) Coast-like (Diamond-Square) (b) Simple shapes

(c) Random walk (d) Random links

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 19 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Average running times (in ms) required by the proposed planners

Grid Type Size ID-DFS L H L+H

(a) 4x4 0.026 0.019 0.011 0.011
(a) 5x5 178.745 8.360 0.195 0.136
(a) 6x6 - 238154.000 333.692 97.341
(a) 7x7 - - 767.201 233.994
(b) 4x4 0.004 0.003 0.002 0.002
(b) 5x5 0.340 0.052 0.016 0.014
(b) 6x6 - 6613.510 28.305 10.739
(b) 7x7 - - 29249.800 527.177
(c) 4x4 0.010 0.006 0.006 0.006
(c) 5x5 13.498 2.126 0.142 0.100
(c) 6x6 74824.000 4589.350 22.353 10.841
(c) 7x7 - - 45515.500 6485.340
(d) 4x4 0.158 0.073 0.017 0.016
(d) 5x5 3.541 0.389 0.058 0.045
(d) 6x6 26947.300 688.076 4.088 1.946
(d) 7x7 - 165167.000 383.875 70.261

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 20 / 21

Introduction Base Optimal Planner Contributions Evaluation Conclusion

Conclusion

Optimally solving the discrete grid-based CPP problem is NP-Hard.

There was no optimal discrete solver described in the literature.
We proposed a planner based on ID-DFS along with two improvements :

a branch-and-bound state-space pruning using loop detection ;
an admissible heuristic function allowing pruning and ordering of the subtrees.

The two proposed improvements lead to orders of magnitude speedup over the
ID-DFS planner and can be combined together for further speed improvements.
As future work, we plan to develop and test :

method inspired by particle swarm optimisation (PSO) ;
decomposition of the grid using clustering algorithms such that each sub-grid can be
solved independantly in parallel.

Acknowledgments

We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC)
and the Fonds de recherche du Québec — Nature et technologies (FRQNT).

Champagne Gareau, Beaudry, Makarenkov UQAM Optimal Coverage Path-Planning November 25–27, 2021 21 / 21

	Introduction
	What is Coverage Path-Planning
	Existing approaches
	Research problem

	Base Optimal Planner
	

	Contributions
	Loop detection
	Admissible heuristic

	Evaluation
	

	Conclusion
	

