Fast and Optimal Planner for the Discrete
Grid-Based Coverage Path-Planning Problem

Jaél Champagne Gareau!0000—-0002—1906—4157] "Erjc
Beaudryl0000-0002—4460-0536] 1\ Vadimir Makarenkoy[0000—0003—3753-5025]

Université du Québec a Montréal
champagne_gareau. jael@courrier.uqam.ca
{beaudry.eric,makarenkov.vladimir}Quqgam.ca

Abstract. This paper introduces a new algorithm for solving the dis-
crete grid-based coverage path-planning (CPP) problem. This problem
consists in finding a path that covers a given region completely. Our algo-
rithm is based on an iterative deepening depth-first search. We introduce
two branch-and-bound improvements (Loop detection and Admissible
heuristic) to this algorithm. We evaluate the performance of our planner
using four types of generated grids. The obtained results show that the
proposed branch-and-bound algorithm solves the problem optimally and
orders of magnitude faster than traditional optimal CPP planners.

Keywords: Coverage path-planning - Iterative Deepening Depth-First
Search - Branch-and-Bound - Heuristic Search - Pruning - Clustering

1 Introduction

Path Planning (PP) is a research area aimed at finding a sequence of actions
that allows an agent (e.g., a robot) to move from one state (e.g., position) to
another [8] (e.g., finding an optimal path for an electric vehicle [1]). One of
the problems studied in PP is the complete Coverage Path-Planning (CPP)
problem. Basically, the objective of CPP is to find a complete coverage path of a
given region, i.e., a path that covers every area in the region. This problem has
many practical applications, including window washer robots, robotic vacuum
cleaners, autonomous underwater vehicles (AUVs), mine sweeping robots, search
and rescue planning, surveillance drones, and fused deposition modeling (FDM)
3D printers. All of them rely on efficient CPP algorithms to accomplish their
task [3,6,7].

There exist many variants of the CPP problem. For example, the environment
can be either discrete (e.g., grid-based, graph-based, etc.) or continuous, 2D or
3D, known a priori (off-line algorithms), or discovered while covering it (on-line
algorithms), etc. Moreover, the coverage can be done by a single agent, or by the
cooperation of multiple agents. Some variants also restrict the type of allowed
movements or add different kinds of sensors to the agent (proximity sensor, GPS,
gyroscopic sensor, etc.). Some variants even consider positional uncertainties and
energetic constraints of the agent. In this paper, we focus on the classic variant



consisting of a single agent in a 2D discrete grid-based environment with no
specific constraints or uncertainties.

The objective of our study is to present an optimal CPP planner that runs
orders of magnitude faster than a naive search through the state-space. Our
research contributions are as follows:

1. A novel branch-and-bound optimal planner to the grid CPP problem:;
2. An informative, admissible, efficient heuristic to the grid CPP problem;
3. Realistic environments for benchmark;

The rest of the paper is structured as follows. Section 2 presents a short
overview of existing CPP solving approaches. Section 3 formally introduces the
CPP variant we are focusing on. Section 4 and Section 5 present, respectively, our
method and the obtained results. Finally, Section 6 describes the main findings
of our study and presents some ideas of future research in the area.

2 Related Work

One of the most known algorithm which solves the CPP problem in a grid-based
environment is the wavefront algorithm [14]. Given a starting position and a
desired arrival (goal) position (which can be the same as the starting position),
the wavefront algorithm propagates a wave from the goal to the neighboring
grid cells (e.g., with a breadth-first search through the state-space). After the
propagation, every grid cell is labeled with a number that corresponds to the
minimum number of cells an agent must visit to reach the goal from the cell.
The algorithm is then simple: the agent always chooses to visit the unvisited
neighboring cell with the highest number first, breaking ties arbitrarily. One
disadvantage of this strategy is the obligation to specify a goal state. In some
applications, the ending location is not important, and not specifying it allows
for finding shorter paths. There exists an on-line variant of the wavefront al-
gorithm [12] that can be used if the environment is initially unknown. When
a CPP algorithm should be applied to a road network (e.g., a street cleaning
vehicle that needs to cover every street), a graph representation (instead of a
grid) is advantageous. Many algorithms have been proposed to solve the discrete
CPP in graph-based representation [13].

For the coverage of continuous regions, one major family of algorithms is the
cellular decomposition methods. They consist in partitioning complex regions in
many simpler, non-overlapping regions, called cells. These simpler regions don’t
contain obstacles, and are thus easy to cover. The most known algorithm that
uses this strategy is the boustrophedon decomposition algorithm [4]. Another
strategy that can be used for the complete coverage of continuous regions is to
discretize the environment and use a discrete planner (e.g., the aforementioned
wavefront algorithm).

The above algorithms are relatively fast, but provide no guarantee of op-
timality. This is expected, since a reduction exists between the CPP problem
and the Travelling Salesman Problem, making the CPP problem part of the



NP-Complete class of problems [10]. Thus, to the best of our knowledge, all
CPP planners described in the literature either provide approximate solutions,
or work only in a specific kind of environment.

For related works on more specific variants of the CPP problem, see the
referred surveys [3,6,7].

3 Problem modeling

This paper presents an optimal planner which, since the problem is NP-Complete,
must have a worst-case exponential complexity. However, we propose two speed-
up methods that, according to our evaluation, provide an orders of magnitude
faster planner. We focus on the CPP variant consisting in a 2D grid that needs to
be covered by a single agent with no particular goal position. Definitions 1 to 3
describe more formally the environment to cover, the agent and the state-space
model considered in our study.

Definition 1. A 2D environment is an m X n grid represented by a matriz
G = (9i5),, x> where g;; € {O, X}, and:
— O indicates that a cell is accessible and needs to be covered;

— X means that the cell is inaccessible (blocked by an obstacle).

Definition 2. An agent is an entity with a position somewhere on the grid. It
can move to neighboring grid cells by using an action a from the set of actions
A ={(-1,0),(+1,0),(0,-1),(0,4+1)}. The effect of each action is as follows.

If p = (i,7) denotes the agent’s current position (i.e., the agent is on the grid
cell gi;) and it executes action a = (a1,as), then its new position p is:

~ (Z + alvj + aQ) Zf Jitai,j+as = )
p= .
P if Gitar jtar = X.
Definition 3. A state is a tuple s = (is, js, R), where:

— (is,Js) is the position (row, column) of the agent;
— R={(4,7) | gi;j = O and position (i,j) has not yet been explored}.

We now formally define what we mean by a CPP problem instance, a solution
to such an instance, and our optimization criterion in Definitions 4 to 6, and give
an example of a problem instance in Fig. 1.

Definition 4. An instance of our CPP problem wvariant is given by a tuple
(G, s50), where G is an environment, as defined in Definition 1, and so = (io, jo, Ro)
is the initial state, where Ry = {(4,7) | gi; = O}.

Definition 5. A solution to such an instance (G, so) is an ordered list of actions
p={ai,as,...,ax) (also called a plan) that moves the agent through positions:

L = ((io, jo), (i1, J1)s - - - (i, Ji))
with Ry C L (i.e., the final state is (ix, jx, D))



Definition 6. Let P be the set of solutions (plans) of a CPP problem instance.
The objective is to find an optimal solution p* = argmin,.p |p|. Namely, p* is
a minimal ordered list of actions that solves the problem.

Fig.1. A CPP instance. The dark green, light green and grey cells represent, respec-
tively, the initial cell, the cells that remain to be covered and the inaccessible cells.

4 Proposed Methods

In this section, we present an optimal CPP planner based on the ID-DFS algo-
rithm, and describe two techniques (loop detection and an admissible heuristic)
that preserve the optimality of the obtained solutions, while running orders of
magnitude faster than an exhaustive search algorithm.

4.1 TIterative Deepening Depth-First Search (ID-DFS)

We begin by describing a naive planner first, since our branch-and-bound algo-
rithm is based on it, and since no optimal CPP planners are explicitly mentioned
in the literature. First, we observe that our problem can be viewed as a search
in a graph where every node represents a state in the state-space (it is worth
noting that such a graph is exponentially larger than the problem grid). Thus,
every standard graph search algorithms can theoretically directly be used, in-
cluding the well-known depth-first search (DFS) and breadth-first search (BFS)
algorithms. However, because of the huge size of the search graph, BFS is im-
practical. Indeed, BFS needs in the worst-case scenario to store the complete
state-space graph in the computer’s memory, which is too large even for a small
problem size (e.g., a 20x20 grid). Thus, every technique based on BFS, including
the Dijkstra and A* algorithms, are non-applicable in practice.

On the other hand, the DFS algorithm can go arbitrarily deep in the search
tree even though the solution is close to the root (e.g., it can get stuck by
expanding nodes over and over indefinitely, never backtrack and thus never find



a solution). A safeguard is to use a variant of DFS, called iterative deepening
depth-first search (ID-DFS) [11], which uses DFS but has a depth limit. If a
solution is not found within the depth limit &, DFS is carried out again with the
depth limit k£ + 1 and continues until a solution is found. ID-DFS ensures that
the algorithm never goes deeper than necessary and ensures that the algorithm
terminates (if a solution exists). Algorithm 1 presents the details of a CPP
planner based on ID-DFS. We recall from the previous section that R is the set
of grid cells that remain to be covered (i.e., initially, it is equal to the total set
of grid cells to cover). The rest of the pseudocode should be self-explanatory.

Algorithm 1 CPP planner based on ID-DFS

1: global

2: p*: data-structure (eventually) containing the solution

3: s = (is,js, R): current agent position

4: procedure ID-DFS-PLAN( )

5: for k < |Ro| to oo do > k is the depth limit
6: found < ID-DF'S-HELPER(K, 0)

T if found then return

8: procedure ID-DFS-HELPER(k: depth-limit, d: current depth) : boolean

9: if k = d then return |R| =0 > returns true iff the grid is fully covered
10: for all a € A do
11: if a is a valid action in the current position then
12: move agent by executing action a
13: found < ID-DFS-HELPER(k, d + 1)
14: if found then
15: add a at the start of solution p* > p* is found in reverse order
16: return true
17: else
18: backtrack one step in the search tree > undo last move
19: return false

4.2 Pruning using Loop detection and Admissible CPP Heuristic

While Algorithm 1 yields an optimal solution, and guarantees it if such a solution
exists, it has to analyze many branches of the search tree that are not promising
(i.e., have little chance of leading to an optimal solution). Our branch-and-bound
planner aims at alleviating this problem by cutting the unpromising parts of the
search tree. One type of unpromising subtrees occur when the agent arrives in
a grid cell (4,7), which has already been visited, without having covered any
other grid cell since its last visit to position (i,5) (i-e., we detected a loop in
the state-space). In order to take this into account, we introduce the matrix
M = (myj),,«n» Where m;; is the number of grid cells that remained to be
covered the last time the agent was in position (4, j). We modify Algorithm 1 to
consider and update this new matrix M. When a new recursive call begins, and



the agent is in position (7, j), a condition is inserted to check if m;; < |R|. If this
condition is true, then the current path is clearly suboptimal, and the current
subtree is thus pruned from the search space.

A second way to improve Algorithm 1 is to introduce an admissible heuristic
cost function h: & — N, i.e., a function that takes as input states s = (i, 4, R)
from the set of states S and returns as output a lower bound h(s) on the number
of actions needed to cover the remaining uncovered grid cells (the cells in R).
Such a heuristic can be used in two ways: (1) It allows pruning even more
unpromising subtrees than with the previously mentioned method, and (2) it
allows ordering the successors of a state by how much promising they are and
thus finding a solution faster by exploring the most promising subtrees first.

Fig. 2. Example showing how the proposed heuristic works in practice.

Algorithm 2 Heuristic cost computation
1: procedure MIN-REMAINING-MOVES((%, j, R): a state) : positive integer

2: left < right < up < down < 0 > Variables initialization
3: for all (r;,7;) € R do > Loop on every remaining grid cell to cover
4: if r; < i then > The uncovered cell is above
5: up = max(up,i — ;)

6: else down = max(down,r; — i) > The uncovered cell is below
T if r; < j then > The uncovered cell is to the left
8: left = max(left,j —r;)

9: else right = max(right,r; — j) > The uncovered cell is to the right

10: return left + right + min(left, right) + up + down + min(up, down)

We describe our novel heuristic by explaining how it computes the lower
bound using an example presented in Fig. 2. In this figure, three grid cells (A, B
and C) remain to be covered. Our heuristic computes the minimum number of
every action in A that need to be done to cover the remaining cells. For example,
the action corresponding to "go left" must be done at least max(4, 3,0) = 4 times



and the action corresponding to "go right" must be done at least max(0,0,2) = 2
times. Moreover, if the agent goes two cells to the right, the minimum number
of moves to the left will now be two more than the previous minimum of 4, i.e.,
6. Algorithm 2 shows more precisely how h(s) is computed.

5 Results and analysis

The algorithms described in Section 4 were implemented in C++. The tests were
carried out on a PC computer equipped with an Intel Core i5 7600k processor
and 32GB of RAM (our planner never used more than 10 MB even on the largest
grids, thanks to ID-DFS, so the memory usage in not a problem). To measure
the performance of our algorithms, we ran each of them 50 times on the same
test grids and took the average of the results obtained. Every planner was tested
with each of the four kinds of artificial grids shown in Fig. 3. Type (a) grids were
generated with the Diamond-Square algorithm and have the shape of a coast [5].
Type (b) grids were generated by randomly placing simple shapes (triangles,
discs and rectangles), whereas type (c) grids mimic a random walk on a grid, and
type (d) grids include cells with randomly added "links" between neighboring
positions on the grid. All grid types were generated with an inaccessible cells
density of (50 &+ 1)%.

) Coast-like b) Simple shapes
) Random walk ) Random links

Fig. 3. The four types of generated grids in our benchmark

Table 1 reports the average running times measured for each planner on the
considered types of test grids. Every generated grid had a square dimension,
shown in column Size. The columns L and H, respectively, stand for our two
improvements over the ID-DFS (Algorithm 1) planner, i.e., (L)oop detection



and (H)euristic pruning. In the table, the character ~> means that the planner

failed to solve the problem within 5 minutes. Note that we do not show solutions
length in the table since all techniques yield optimal solutions. As we can see,
both variants of our algorithm based on the branch-and-bound approach are
orders of magnitude faster, on every type of grid, than the ID-DFS planner.

Table 1. Average running times (in ms) required by the ID-DFS planner and the
proposed algorithms (Loop detection and Heuristic pruning)

Grid Type Size | ID-DFS | L H L+H
(a) 4x4 0.026 0.019 0.011 0.011
(a) 5%5 178.745 8.36 0.195 0.136
(a) 6x6 - 238154 333.692 97.341
(a) =7 - - 767.201 233.994
(b) 4x4 0.004 0.003 0.002 0.002
(b) 5%5 0.34 0.052 0.016 0.014
(b) 6x6 - 6613.51 28.305 10.739
(b) <7 - - 29249.8 527.177
(c) 4x4 0.01 0.006 0.006 0.006
(c) 5x5 13.498 2.126 0.142 0.1
(c) 6x6 74824 4589.35 22.353 10.841
(c) <7 - - 45515.5 6485.34
(d) 4x4 0.158 0.073 0.017 0.016
(d) 5%5 3.541 0.389 0.058 0.045
(d) 6x6 26947.3 688.076 4.088 1.946
(d) 77 - 165167 383.875 70.261

6 Conclusion

This paper considers relevant but not very well studied problem of complete
coverage path-planning (CPP). We showed how an exhaustive algorithm based
on iterative deepening depth-first search (ID-DFS) can be effectively acceler-
ated using a branch-and-bound approach. The proposed modifications allow the
planner to find an optimal CPP solution orders of magnitude faster compared
to ID-DFS, which makes it suitable for practical applications.

As future work, we plan to develop and test a method similar to particle
swarm optimization (PSQO) considering an initial particle that splits the problem
into several sub-problems every time there is more than one eligible neighbor.
The splitting process will take place until the number of particles reaches a
certain threshold N. When this happens, a pruning process destroying the least
promising particles can be carried out according to an evaluation heuristic to
be determined. We also envisage to use clustering algorithms [9] to decompose
a given grid into smaller, mostly independent sub-grids (i.e., similar to cellular



decomposition, but for grid environments), which could be covered optimally one
by one. Such an algorithm could be also easily parallelized. The use of clustering
techniques has helped optimize the computation process in many different fields

(see e.g., [2]).

Acknowledgments

We acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Fonds de Recherche du Québec — Nature
et Technologies (FRQNT). We would also like to thank Alexandre Blondin-
Massé, Guillaume Gosset, and the anonymous authors for their useful advices.

References

1.

11.

12.

13.

14.

Champagne Gareau, J., Beaudry, E., Makarenkov, V.. An Efficient Elec-
tric Vehicle Path-Planner That Considers the Waiting Time. In: Proceed-
ings of the 27th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems. pp. 389-397. ACM, Chicago (2019).
https://doi.org/10.1145/3347146.3359064

Champagne Gareau, J., Beaudry, E., Makarenkov, V.: A Fast Electric Vehicle Plan-
ner Using Clustering. In: Studies in Classification, Data Analysis, and Knowledge
Organization. vol. 5, pp. 17-25. Springer Science and Business Media Deutschland
GmbH (2021). https://doi.org/10.1007/978-3-030-60104-1 3

Choset, H.: Coverage for robotics - A survey of recent results. An-
nals of Mathematics and Artificial Intelligence 31(1-4), 113-126 (2001).
https://doi.org/10.1023/A:1016639210559

. Choset, H., Pignon, P.: Coverage Path Planning: The Boustrophedon Cellular De-

composition. In: Field and Service Robotics, pp. 203-209. Springer (1998)
Fournier, A., Fussell, D., Carpenter, L.: Computer Rendering of Stochastic Models.
Communications of the ACM 25(6), 371-384 (1982)

Galceran, E., Carreras, M.: A survey on coverage path planning for robotics.
Robotics and Autonomous Systems 61(12), 1258-1276 (2013)

Khan, A., Noreen, 1., Habib, Z.: On complete coverage path planning algorithms
for non-holonomic mobile robots: Survey and challenges. Journal of Information
Science and Engineering 33(1), 101-121 (2017)

LaValle, S.M.: Planning algorithms. Cambridge University Press (2006)

Mirkin, B.: Clustering for Data Mining. Chapman and Hall/CRC (2005)

. Mitchell, J.S.: Shortest paths and networks. In: Handbook of Discrete and Compu-

tational Geometry, Third Edition, pp. 811-848. Chapman and Hall/CRC (2017)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall
Press, Upper Saddle River, NJ, USA, 3rd edn. (2009)

Shivashankar, V., Jain, R., Kuter, U., Nau, D.: Real-time planning for covering an
initially-unknown spatial environment. In: Proceedings of the 24th International
Florida Artificial Intelligence Research Society, FLAIRS - 24. pp. 63-68 (2011)
Xu, L.: Graph Planning for Environmental Coverage. Thesis, Carnegie Mellon Uni-
versity (2011), http://cs.cmu.edu/afs/cs/Web/People/lingx/thesis_xu.pdf
Zelinsky, A.; Jarvis, R.A., Byrne, J., Yuta, S.: Planning paths of complete coverage
of an unstructured environment by a mobile robot. In: Proc. of the Int’l Conference
on Advanced Robotics & Mechatronics (ICARM). vol. 13, pp. 533-538 (1993)



