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Fast and optimal
branch-and-bound planner for the
grid-based coverage path
planning problem based on an
admissible heuristic function

Jaël Champagne Gareau*, Éric Beaudry and Vladimir Makarenkov

GDAC-LIA, Computer Science Department, Université du Québec à Montréal, Montréal, QC, Canada

This paper introduces an optimal algorithm for solving the discrete grid-based
coverage path planning (CPP) problem. This problem consists in finding a path
that covers a given region completely. First, we propose a CPP-solving baseline
algorithm based on the iterative deepening depth-first search (ID-DFS) approach.
Then, we introduce two branch-and-bound strategies (Loop detection and an
Admissible heuristic function) to improve the results of our baseline algorithm.
We evaluate the performance of our planner using six types of benchmark grids
considered in this study: Coast-like, Random links, Random walk, Simple-shapes,
Labyrinth and Wide-Labyrinth grids. We are first to consider these types of grids in
the context of CPP. All of them find their practical applications in real-world CPP
problems from a variety of fields. The obtained results suggest that the proposed
branch-and-bound algorithm solves the problem optimally (i.e., the exact solution
is found in each case) orders of magnitude faster than an exhaustive search CPP
planner. To the best of our knowledge, no general CPP-solving exact algorithms,
apart from an exhaustive search planner, have been proposed in the literature.

KEYWORDS

coverage path planning (CPP), robotics, iterative deepening depth-first search, branch-
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1 Introduction

The field of automated planning (sometimes called AI planning) focuses on finding a
sequence of actions that allows an intelligent agent (for example, a robot) to reach a goal state
(for example, a specific position in the environment) from a given initial state (Ghallab et al.,
2016). An example of a real-world application of automated planning is the problem of finding
an optimal path for an electric vehicle (Champagne Gareau et al., 2021a). Another problem
studied in automated planning is the complete Coverage Path-Planning (CPP) problem, where
the objective is to find an optimal or quasi-optimal path that covers every area in the region
(we call such a path a complete coverage path of the region). This problem has many practical
applications, such as:

a) robotic vacuum-cleaning (Viet et al., 2013; Yakoubi and Laskri, 2016; Edwards and Sörme,
2018; Liu et al., 2018);

b) underwater autonomous vehicles (AUVs) (Zhu et al., 2019; Han et al., 2020; Yordanova and
Gips, 2020);
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c) 3d printing using fused deposition modeling (Lechowicz et al.,
2016; Afzal et al., 2019; Gupta, 2021);

d) windowwasher robots (Farsi et al., 1994; Dr.; John Dhanaseely and
Srinivasan, 2021);

e) disinfection of regions (Conroy et al., 2021; Nasirian et al., 2021;
Vazquez-Carmona et al., 2022);

f) minesweeping (Healey, 2001; Williams, 2010; Ðakulovic and
Petrovic, 2012);

g) agriculture and farming (Oksanen and Visala, 2009; Jin, 2010;
Santos et al., 2020);

h) surveillance drones (Ahmadzadeh et al., 2008; Modares et al.,
2017; Vasquez-Gomez et al., 2018);

i) search and rescue aerial drones (Hayat et al., 2020; Ai et al., 2021;
Cho et al., 2021).

Figure 1 gives a visual representation of these applications. All
of them rely on efficient CPP algorithms to accomplish their task
(Choset, 2001; Galceran and Carreras, 2013; Khan et al., 2017).

Many variants of the CPP problem exist. The algorithm to
be used depends a lot on the variant under study. The working
environment can be either discrete (e.g., grid-based, graph-based, etc.)
or continuous, 2D or 3D, known a priori (i.e., off-line algorithms),
or discovered while doing the coverage (i.e., on-line algorithms).
Moreover, the coverage can be done by a single agent, or by the
cooperation of multiple agents. Some variants also restrict the type

of allowed movements or add different kinds of sensors to the agent
(e.g., proximity sensor, GPS, gyroscopic sensor, etc.). Some variants
even consider positional uncertainties and energetic constraints of the
agent. In this paper, we focus on the classical variant consisting of a
single agent in a 2D discrete grid-based environment with no specific
constraints or uncertainties.

The objective of our study is to present an optimal CPP planner
that runs orders of magnitude faster than a naive search algorithm
through the state-space. Our main research contributions are as
follows. We propose:

1) A novel branch-and-bound optimal planner to the grid CPP
problem;

2) An informative, admissible, efficient heuristic to the grid CPP
problem;

3) Realistic environments for discrete grid-basedCPP benchmarking.

This article is an extended version of our conference paper
presented at the IDEAL2021 meeting (Champagne Gareau et al.,
2021b). We extend our previous work by:

• greatly expanding the Introduction and Related Work
sections to present various applications of CPP and to
better show how our algorithm (including the two proposed
improvements) compares to the existing approaches;

FIGURE 1
Visual representation of CPP practical applications (all photos were taken from the public domain).

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2022.1076897
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Gareau et al. 10.3389/frobt.2022.1076897

• improving the proposed heuristic function;
• improving the empirical evaluation, including additionnal
experiments, new plots and two new type of benchmark grids;
• expanding the analysis of our results, by explaining more deeply
the causes of the observed improvements and what these results
mean in practice.

Below, we present an overview of existing CPP solving approaches
and their practical applications in the field of robotics.

Grid-based methods decompose the environment that we want
to explore into a collection of uniform grid cells. A grid-based
representation was first proposed by Moravec and Elfes (1985).
A classical algorithm to solve the CPP problem in a grid-based
environment is the wavefront algorithm (Zelinsky et al., 1993). When
given a start and a goal position (which can be the same), this
algorithm propagates a wave from the goal to the neighboring grid
cells (i.e., with a breadth-first search through the state-space). When
the wave reaches a new grid cell, we label the cell with the next
number with respect to the highest label number of the already visited
neighboring cells.

After the propagation, each grid cell will be labeled with
a number corresponding to the minimum number of cells (or
equivalently, the minimum number of moves/actions) an agent must
visit (or equivalently, the minimum number of moves/actions it
must execute) to reach the goal from a given cell. The second
phase of the algorithm is as follows: the agent always visits first the
unvisited neighboring cell with the highest label number, breaking
ties arbitrarily. One disadvantage of this strategy is the necessity to
specify the ending position. In some applications, the ending position
is not important, and not specifying it allows for finding shorter
paths. The algorithm runs in O(n), where n is the number of states,
but has no guarantee of finding an optimal solution. There exists
an on-line variant of the wavefront algorithm (Shivashankar et al.,
2011) which can be used when the environment to cover is a priori
unknown.

Each grid cell in grid-based methods is typically a square or a
rectangle (as in the wavefront algorithm). Oh et al. (2004) proposed
instead to consider a grid of triangular cells which allows for a
higher resolution in comparison to square or rectangular cells of
similar size. However, as Galceran and Carreras (2013) mention in
their survey: “Most mobile robots are not capable of making very
fine movement adjustments, and hence there is no need for ultra high
resolution in coverage path planning. Therefore, the extra effort devoted
to implementing a triangular grid seems not to be worthwhile”.

Grid-based CPPmethods have been proposed to cover irregularly
shaped areas using UAVs (Unmanned Aerial Vehicles). For example,
the algorithm of Cabreira et al., 2019b searches for a path that covers
in the most “energy-efficient” way the area to be explored. In contrast,
most other CPP methods for UAVs consider the number of “turning
maneuvers”, thus minimizing the energy consumption only indirectly
(see, e.g., Valente et al. (2013)). The algorithm of Cabreira et al. is
similar to the baseline algorithmwepresent in Section 3.1 (the authors
seem to use a variant of the ID-DFS algorithm, even though it is
not clearly mentioned in their paper). They propose two pruning
techniques to reduce the computation time. The former technique
keeps in memory the best (i.e., smallest) cost of the solutions found to
date, and prunes the current subtree whenever the length of the best
current solution exceeds that cost. The latter technique reduces the

FIGURE 2
A CPP instance. The dark green, light green and gray cells represent,
respectively, the initial cell, the cells that remain to be covered and the
inaccessible cells.

computation by keeping intermediate cost in memory and computing
the cost to reach newly encountered cells using the stored cost of
its neighbors instead of computing the cost of travel from the initial
cell. These pruning techniques cannot be applied to solve the grid-
based CPP problem described in the following sections, because we
consider the number of visited cells (including multiple visits) instead
of the energy or cost of the path, and ID-DFS already prevents such
implausible states from being visited.

Another algorithm based on a grid representation of the problem
uses minimum spanning trees (Gabriely and Rimon, 2001). It can
be used either as an on-line or off-line planner. The algorithm of
Gabriely and Rimon, named Spanning Tree Covering, solves a relaxed
CPP problem assuming that the environment can be discretized using
squares of size twice as large as the agent. In this simplified problem,
the algorithm finds an optimal solution and has a time complexity of
O(n).

When a CPP algorithm is applied to a road network (e.g., a
street cleaning vehicle that needs to pass by every street), a graph
representation (instead of a grid one) is more advantageous. It allows
one to model environmental constraints, such as one-way roads,
and a priori incomplete information. Many algorithms have been
proposed to solve the discrete CPP using graph-based representations
(see the survey by Xu (2011)). Some authors have considered the
discrete CPP problem with a different objective function to be
optimized. For example, instead of minimizing the number of steps
required to cover a region, one might be interested in minimizing
the number of rotations of the agent since, depending on the type
of agent, a rotation can be costly in energy (e.g., for skid-steered
robots) or in time (e.g., for differential drive robots). An algorithm
based on the A* algorithm has been proposed to solve this problem
(Dogru and Marques, 2018). Finally, a neural-network representation
of the problem has also been proposed (Yang and Luo, 2004).
One advantage of this representation is that it can handle dynamic
environments.

When the environment to be covered is continuous, cellular
decomposition methods can be used (Choset and Pignon, 1998).
These methods consist in partitioning complex regions in many
simpler, non-overlapping regions, called cells. These simpler regions
do not contain obstacles, and are thus easy to cover. Within
this approach, the CPP problem can be viewed as two different
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FIGURE 3
Difference in the path obtained by an optimal solver (left) and by the wavefront algorithm (right). For the wavefront algorithm, the wave values are shown
inside each grid cells.

sub-problems: (1) to find a “good” cell decomposition of the
environment, and (2) to find the optimal order of visits of the cells.
The simplest and most popular algorithm that uses this strategy is the
boustrophedon decomposition algorithm (Choset and Pignon, 1998). A
more general type of decomposition is theMorse decompositionwhich,
unlike the boustrophedon decomposition, can handle non-polygonal
obstacles (Acar et al., 2002). Instead of using cellular decomposition,
continuous regions can also be discretized, which allows the usage of
any of the aforementioned discrete planners for the complete coverage
of the environment.

For a more detailed description of traditional CPP algorithms,
we refer the reader to the seminal surveys of Choset (2001) and
Galceran and Carreras (2013). More recent surveys, focusing on
specific variants or applications of CPP also exist. For example, in
their survey, Khan et al. (2017) focus on optimized backtracking and
smoothness techniques, which have not been covered previously.
Finally, the review of Cabreira et al., 2019a concentrates on CPP
techniques applied to unmanned aerial vehicles (UAVs).

Several works in the field are dedicated to practical applications of
the CPP problem. For instance, Nasirian et al. (2021) have proposed a
new representation of the problem, using a Markov Decision Process
(MDP), and an algorithm based on deep reinforcement learning for
finding a continuous path for a disinfectant robot that minimizes the
disinfection task completion time in a hospital, to lower COVID-19 or
other virus transmission risks.

All of the above algorithms have a relatively fast running time,
but they either focus on a relaxed instance of the CPP problem
(e.g., the aforementioned spanning-tree covering algorithm) or have
no guarantee of optimality (e.g., the aforementioned wave-front
algorithm). It is important to mention that there exists a reduction
from the Traveling Salesman Problem (TSP) to the general discrete
CPP problem, making CPP a part of the NP-complete class of
problems (Mitchell, 2017). Therefore, the CPP planners described in
the literature either provide approximate problem solutions, or work
only within a relaxed version of the CPP problem with additional
constraints on the environment. To the best of our knowledge, no
discrete CPP planner that are both optimal and general has been
proposed in the literature (other than the trivial, naive algorithm
consisting on exploring the entire state-space).

The rest of the article is organized as follows. In Section 2,
we formally introduce the CPP variant of interest. Section 3 and
Section 4 describe, respectively, our method and the results obtained.
Finally, Section 5 presents the main findings of our study, and
discusses some ideas for future investigation.

2 Problem modeling

In this section, we mathematically define the coverage
path planning theoretical framework we used in this research.
Definitions 1–3 describe more formally the environment to cover,
the agent and the state-space model considered in our study.

Definition 1: A 2D environment is an m× n grid represented by a
matrix G = (gij)m×n, where gij ∈ {O,X}, and:

• O indicates that a cell is accessible and needs to be covered;
• X means that the cell is inaccessible (blocked by an obstacle).

Definition 2: An agent is an entity with a position somewhere on the
grid. It can move to neighboring grid cells by using an action a from
the set of actionsA = {(−1,0), (+1,0), (0,−1), (0,+1)}.The effect of each
action is as follows.

If p = (i, j) denotes the agent’s current position (i.e., the agent is on
the grid cell gij) and it executes action a = (a1,a2), then its new position
p̃ is:

p̃ =
{{
{{
{

(i+ a1, j+ a2) if gi+a1,j+a2 = O

p if gi+a1,j+a2 = X.

Definition 3: A state is a tuple s = (is, js,R), where:

• (is, js) is the position (row, column) of the agent;
• R = {(i, j) ∣ gij = O and position(i, j) has not yet been explored}.

Assuming a square grid of size n× n, the state-space (the set
of all states) has cardinality n2 × 2n

2
. It is thus important to note
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that the state-space is exponentially larger than the size of the grid
environment. We now formally define what we mean by a CPP
problem instance, a solution to such an instance, and our optimization
criterion (see Definitions 4–6), and give an example of a problem
instance in Figure 2.

Definition 4: An instance of our CPP problem variant is given
by a tuple (G, s0), where G is an environment, as defined
in definition 1, and s0 = (i0, j0,R0) is the initial state, where
R0 = {(i, j) ∣ gij = O}.

Definition 5: A solution to such an instance (G, s0) is an ordered list
of actions p = ⟨a1,a2,…,ak⟩ (also called a plan) that moves the agent
through positions:

L = ⟨(i0, j0) , (i1, j1) ,…,(ik, jk)⟩,

with R0 ⊆ L (i.e., the final state is (ik, jk,∅)).

Definition 6: Let P be the set of solutions (plans) of a CPP
problem instance. The objective is to find an optimal solution p⋆ =
argminp∈P |p|. Namely, p⋆ is a minimal ordered list of actions that
solves the problem.

3 Proposed methods

As previously noted, existing methods used to solve the grid-
based CPP problem are either non-general (they work only in some
specific cases) or non-optimal (they don’t necessarily provide the
optimal, i.e., shortest-path, solution). To illustrate how suboptimal
they can be, we present in Figure 3 the path obtained on the
same 4 × 4 grid by an optimal solver (on the left) and by the
wavefront algorithm described in Section 1 (on the right). The
optimal solution has a length of 11, while the solution found by the
wavefront algorithm has a length of 19. The optimal solution thus
requires 8 moves less, which is about 40% shorter. Note that this
example is a worst-case scenario for the wavefront algorithm in a 4
× 4 grid. Thus, the difference in solution quality between classical
algorithms like thewavefront algorithmandoptimal algorithms can be
significant.

In the first part of this section, we present an optimal CPP
planner based on the ID-DFS algorithm. Because the problem is NP-
complete, the algorithm has a worst-case exponential time complexity.
The second part of this section describes the two improvements we
propose (i.e., loop detection and an admissible heuristic function)
which preserve the optimality of the obtained solutions, while
running orders of magnitude faster than an exhaustive search
algorithm.

3.1 Iterative deepening depth-first search
(ID-DFS)

Since there is no optimal and general discrete CPP planner
described in the literature, we begin by presenting an exhaustive
search planner, on which our two proposed improvements are
based on.

First, we observe that our problem can be viewed as a search in
a graph where every node represents a state in the state-space (as

Algorithm 1. CPP planner based on ID-DFS.

defined in Definition 3). Thus, we can theoretically use any standard
graph search algorithm, such as the well-known depth-first search
(DFS) and breadth-first search (BFS) algorithms. However, because
of the huge size of the graph representing the state-space (i.e., the
state-space is exponentially larger than the problem grid), BFS is
impractical. Indeed, this search algorithm needs in the worst-case
scenario to store the complete state-space in the working memory,
which is too large even for a small problem grid (e.g., a 20× 20
grid has a state-space of 200× 2200 states). In practice, we can’t use
BFS or other algorithms based on BFS, such as the Dijkstra and A⋆

algorithms.
On the other hand, the DFS algorithm can go arbitrarily deep

in the search tree even when the solution is close to the root (e.g.,
it can get stuck by expanding nodes over and over indefinitely,
never backtracking and thus never finding a solution). A safeguard
is to use a variant of DFS, called iterative deepening depth-first
search (ID-DFS) (Russell and Norvig, 2009), which works similarly
to DFS but considers a depth limit. When a solution is not found
within the current depth limit k, the algorithm restarts its search
but with the depth limit k+ 1 and continues until a solution
is found. It ensures that the algorithm never goes deeper than
necessary and that the algorithm terminates (if a solution exists).
Algorithm 1 presents the details of a CPP planner based on ID-
DFS. We recall from the previous section that R0 is the set of grid
cells that need to be covered. The rest of the pseudocode should be
self-explanatory.

3.2 Pruning using loop detection

Algorithm 1 provides an optimal solution for each problem
instance and is guaranteed to terminate if a solution exists. However,
it has to analyze many branches of the search tree that are not
promising (i.e., that have a little chance or no chance at all to lead to an
optimal solution). Our branch-and-bound planner aims at alleviating
this problem by pruning the unpromising parts of the search tree
during the search. There are many different types of unpromising
subtrees. One such type occurs when the agent arrives in an already
visited grid cell (i, j) without having covered any new grid cell since
its last visit (i.e., we found a loop in the state-space). In order to
find such loops, we introduce the matrix M = (mij)m×n, where mij is
the number of grid cells that remained to be covered the last time
the agent was in position (i, j). We modify Algorithm 1 to consider
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FIGURE 4
Examples explaining how the proposed heuristic works in practice.

and update this new matrix M. When a new recursive call starts,
and the agent is in position (i, j), a condition is inserted to check
if mij ≤ |R|. If this condition is true, then the current path is clearly
suboptimal, and the current subtree is thus pruned from the search
tree.

3.3 Pruning using an admissible CPP
heuristic function

A second way to improve Algorithm 1 is to introduce an
admissible heuristic cost function h:S →ℕ, i.e., a function that takes
as input states s = (i, j,R) from the set of states S and returns as output
a lower bound h(s) on the number of actions needed to cover the
remaining uncovered grid cells (the cells in R). Such a heuristic can
be used in two ways: (1) It allows pruning even more unpromising
subtrees than what is possible using the Loop-Detection method
(see Section 3.2), and (2) it allows ranking the successors of a state
depending on how much promising they are, and thus finding an
optimal solution faster by exploring the most promising subtrees
first.

We describe our novel heuristic and explain how it computes
the lower bound using an example presented in Figure 4 (Example
1, on the left). In this figure, three grid cells (A, B and C) remain
to be covered. Our heuristic computes the minimum number of
actions (for each of the four possible moves) in A that need to
be executed to cover the remaining cells. For example, the action
corresponding to “go left” must be executed at least max(4,3,0) = 4
times and the action corresponding to “go right” must be executed
at least max(0,0,2) = 2 times. To obtain a tighter lower-bound, we
observe that if the agent goes 2 cells to the right, theminimumnumber
of moves to the left will now be two more than for the previous
minimum of 4, i.e., 6. We can thus add min(left, right) to the number
of “leftmoves” and “right moves”.The same computation is carried out
for the “go up” and “go down”moves.We thus finally obtain a heuristic
value of:

4+ 2+min (4,2) + 1+ 2+min (1,2) = 12.

In Example 1, the obtained heuristic value of 12 is not higher
than the actual number of actions necessary to cover A, B and C,
and is a much more informative heuristic value than the number of
uncovered cells (i.e., 3). However, under some (rare) circumstances,
the number of uncovered cells can be more informative than

Algorithm 2. Heuristic cost computation.

the heuristic value computed as explained above. For instance, if
we look at Example 2 in Figure 4, the heuristic value we would
obtain is:

1+ 1+min (1,1) + 1+ 2+min (1,2) = 7,

which is lower than the number of uncovered cells (i.e., 11). To
further improve the informativeness of our heuristic function (i.e.,
obtain tighter lower bounds on the remaining number of actions), our
heuristic function returns the maximum of the two values.

Algorithm 2 shows more precisely how the heuristic value h(s) of
a given state s is computed.

3.4 ID-DFS CPP planner using the proposed
pruning techniques

Algorithm 3 presents the planner we obtain when modifying the
ID-DFS planner (Algorithm 1) to prune the state-space using the
two proposed techniques (pruning using loop detection, and pruning
using the admissible heuristic function). In Algorithm 3, the added
instructions related to the loop detection are colored in green, while
those related to the use of the heuristic function are colored in blue.

Pruning using loop-detection is done exactly as described in
Section 3.2. The matrix defined on Line four is used on Line 13 to
prune the detected loops in the state-space.

The heuristic function (i.e., the function defined in Algorithm 2)
is used in two ways. Firstly, it is used on Line six to provide an initial
depth limit for ID-DFS.This allows the algorithm to start with a higher
initial depth limit than in Algorithm 1 in the case when the heuristic
value is higher than the number |R0| of cells to be covered in the initial
grid. Secondly, it is used on Line 11 to prune the currently explored
subtree in the state-space if k− d, i.e., the number of remaining moves
that can be done before reaching the depth limit, is less than the lower-
bound, given by the heuristic function, of the number of necessary
moves to complete the coverage.

4 Results and analysis

The algorithms described in Section 3 were implemented in C++.
The tests were carried out on a PC computer equipped with an Intel
Core i5 7600k processor and 32 GB of RAM. Thanks to ID-DFS’s low
memory consumption, all tested algorithms have never used more
than 10 MB of RAM memory, even on the largest test environments.
Thus, the memory usage is not an interesting benchmarking metric
here. The obtained solutions’ quality is also not an interesting metric
to compare the proposed algorithms (the baseline, ID-DFS, and the
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Algorithm 3. Heuristic cost computation.

two proposed improvements, Loop-Detection andHeuristic function)
because all of them always provide optimal solutions, i.e., plans with
the sameminimal length (number of actions). However, for eachtested

grid, our program returns the length of an optimal solution as well as
the solution found by the classical (non-optimal) wavefront algorithm
(described in Section 1) to give an idea of the difference in the
quality of solution we can expect between an optimal and a classical,
approximate algorithm.

We propose six types of synthetic grids which cover many
completely different scenarios.We believe that by using these synthetic
grids in our evaluation, we are able to measure more generally the
strenghts and weaknesses of each proposed algorithm (compared to
testing it on a specific real-world grid-environment, which would have
a particular shape and not cover as many scenarios).

Every planner was tested with each of the six kinds of artificial
grids shown in Figure 5. Type (a) grids were generated with
the Diamond-Square algorithm. They have the shape of a coast
(Fournier et al., 1982). Type (b) grids include cells with randomly
added “links” between neighboring positions on the grid. Type
(c) grids mimic a random walk on a grid. Type (d) grids were
generated by randomly placing simple shapes (triangles, discs and
rectangles). Type (e) grids are perfect labyrinths (i.e., labyrinths with
no cycle). Finally, type (f) are wide labyrinths (i.e., labyrinths were
each "path" has a width of 2 cells). All grid types were generated
with an inaccessible cells density of (50± 1)%. To measure the

FIGURE 5
The six types of generated grids in our benchmark: (A) Coast-like, (B) Random links, (C) Random walk, (D) Simple shapes, (E) Labyrinth, (F) Wide-labyrinth.
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TABLE 1 Average running times (in ms) obtained by the proposed planners. Columns“OS”and“WFS”give the length of an optimal solution and of the solution
obtained with the approximate wavefront solver. The symbol ‘-’ indicates when a solver could not solve an instance within 5 min.

Type Size ID-DFS L H L + H OS WFS

(a) 3 0.01 0.01 0.00 0.00 4 4

(a) 4 1.79 0.68 0.02 0.02 9 9

(a) 5 877.45 75.35 1.10 0.91 14 16

(a) 6 87,595.50 1220.18 2.68 1.63 18 19

(a) 7 - 14,598.20 377.89 169.61 24 27

(a) 8 - - 7369.90 4605.85 34 38

(a) 9 - - 91,806.70 86,891.90 42 47

(a) 10 - - 259,001.00 228,610.00 48 52

(b) 3 0.00 0.00 0.00 0.00 3 3

(b) 4 0.08 0.06 0.01 0.01 8 9

(b) 5 6.10 2.05 0.04 0.04 12 13

(b) 6 18,475.70 4225.29 1.40 1.04 19 20

(b) 7 275,006.00 196,072.00 41.98 14.91 24 26

(b) 8 - - 17,688.50 5481.63 33 35

(b) 9 - - 94,546.60 63,041.10 40 43

(b) 10 - - 285,868.00 244,529.00 47 52

(c) 3 0.00 0.01 0.00 0.00 5 5

(c) 4 0.04 0.03 0.01 0.01 7 9

(c) 5 15.03 5.84 0.03 0.03 13 14

(c) 6 21,457.50 1024.13 0.62 0.41 18 21

(c) 7 - 197,872.00 76.95 53.62 26 27

(c) 8 - 280,669.00 97.45 75.26 32 36

(c) 9 - - 22,104.50 20,105.50 39 42

(c) 10 - - 105,775.00 102,159.00 52 57

(d) 3 0.00 0.00 0.00 0.00 2 2

(d) 4 0.01 0.01 0.00 0.00 6 6

(d) 5 8.03 1.61 0.01 0.01 10 12

(d) 6 54,370.60 9442.40 74.96 38.26 22 25

(d) 7 260,308.00 96,891.80 2219.24 257.49 27 32

(d) 8 - 243,374.00 85,053.10 22,908.10 37 42

(d) 9 - - 260,703.00 197,377.00 39 52

(d) 10 - - - 266,157.00 57 62

(e) 3 0.01 0.01 0.01 0.01 7 7

(e) 5 6443.80 11.29 8.78 0.38 22 26

(e) 7 - 78,432.00 2241.60 1291.27 45 53

(e) 9 - - - 78,432.14 73 83

(f) 3 218,413.00 251.60 0.05 0.04 26 27

(f) 5 - 76,982.30 702.31 423.79 67 67

(f) 7 - - 278,412.00 41,247.00 109 124

(f) 9 - - - 259,001.00 157 181
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FIGURE 6
Average running times (in ms) for the type (a) (coast-like) grids.

FIGURE 7
Average running times (in ms) for the type (b) (random links) grids.

FIGURE 8
Average running times (in ms) for the type (c) (random walk) grids.

FIGURE 9
Average running times (in ms) for the type (d) (simple shapes) grids.

FIGURE 10
Average running times (in ms) for the type (e) (labyrinth) grids.

FIGURE 11
Average running times (in ms) for the type (f) (wide labyrinth) grids.

TABLE 2 Average speedup factors produced by each of the three
proposed algorithmic improvements on the six types of grids.

Type L H L + H ASLD

(a) Coast-Like 68.26 23,282.83 34,560.45 1.10

(b) Random Links 1.47 6757.72 18,342.99 1.08

(c) RandomWalk 20.85 32,534.20 47,716.82 1.10

(d) Simple Shapes 2.96 137.17 1063.99 1.17

(e) Labyrinth 570.25 768.03 8156.72 1.15

(f) Labyrinth-Wide 868.10 4,368260 5,460325 1.11

Average 255.31 738,623.32 928,361.00 1.12

performance of our algorithms, we ran each of them 50 times
for each parameter combination (type of grid, size of grid) using
randomly generated grids, and taking the average of the obtained
results.

Table 1 reports the average running times measured for each
planner on each instance of the considered types of test grids. Every
grid we generated had the same number of rows and columns, shown
in column Size. The columns L and H, respectively, stand for our two
improvements over the ID-DFS (Algorithm 1) planner, i.e., (L)oop
detection and (H)euristic pruning. In Table 1, the character ’-’ means
that the planner failed to solve the problemwithin 5 min.The length of
an optimal solution (which is also the length of the solution obtained
by each of our proposed planners, since all of them are optimal) is
given by column OS. For reference, we also provide the length of the
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solution obtained by the classical wavefront algorithm. Figures 6–11
illustrate the obtained results graphically.

As we can see, the L variant is about an order of magnitude faster
than the baseline ID-DFS implementation. The H variant is many
orders ofmagnitude faster than the baseline ID-DFS.The combination
of both improvements (L+H) led to an even greater speedup, albeit the
difference betweenH and L +H is smaller than the difference between
ID-DFS and H, or between ID-DFS and L.This is not surprising, since
there is an overlap between the unpromising states detected due to
the loop detection and those detected by using the proposed heuristic
function.The relative performance of the tested algorithms is the same
in every type of test grids (ID-DFS ≺ L ≺ H ≺ L + H). That being
said, since the overhead of L + H over H (in terms of the memory
usage for thematrix designed to detect loops, and in terms of an added
programming complexity) is minimal, there is no reason not to always
use L + H in practice.

Table 2 reports the average speedup factors provided by each of
the three proposed algorithmic improvements (L, H, L + H) on the
six types of grids. It also reports (in the ASLD column) the Average
Solution Length Difference between an optimal solution (returned
by our algorithms) and an approximate solution (returned by the
wavefront algorithm). As we can see, L + H has been able to find
optimal solutions thousands to millions of times (depending on the
grid type) faster than our baseline ID-DFS planner. Furthermore, we
see that the average solution length difference between an optimal and
approximate solution is at 12% (over all grid types), which can be an
important improvement in some real-world problems.

5 Conclusion

This paper considers the highly relevant optimal complete
coverage path planning (CPP) problem. We first briefly reviewed
practical applications of CPP. Then, we showed how an exhaustive
algorithm based on iterative deepening depth-first search (ID-DFS)
can be efficiently accelerated using a branch-and-bound approach.The
proposed improvements (loop-detection and an admissible heuristic
function) allow the planner to find an optimal CPP solution many
orders of magnitude faster than a baseline ID-DFS implementation,
making it highly suitable for practical applications where having an
optimal solution is important.

As future work, we plan to develop and test a method similar
to particle swarm optimization (PSO) considering an initial particle
that splits the problem into several sub-problems every time
there is more than one eligible neighbor. The splitting process
will take place until the number of particles reaches a certain
threshold. When this happens, a pruning process destroying the
least promising particles can be carried out according to an
evaluation heuristic to be determined. We also envisage using

clustering algorithms (Mirkin, 2005) to decompose a given grid
into smaller, mostly independent sub-grids (i.e., similar to cellular
decomposition, but for grid environments), which could be covered
optimally one by one. Such an algorithm could also be easily
parallelized.
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