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Abstract
Selecting optimal solvers for complex AI tasks grows increasingly difficult as algo-

rithmic options expand. We address this challenge for Stochastic Shortest Path Markov
Decision Processes (SSP-MDPs) — a core model for robotics navigation, autonomous
system planning, and stochastic scheduling — by introducing a topology-driven solver
selection framework. First, we identify and empirically validate topological features — in-
cluding strongly connected components, goal-state ratio, goal eccentricity (i.e., maximal
distance to a goal), and average actions per state — that critically influence solver per-
formance across synthetic and real-world SSP-MDPs. Using these insights, we propose
the first classifier able to predict the fastest MDP solver for a given instance, achieving
over 64% accuracy on diverse benchmarks. Counterfactual explainability analysis further
clarifies how these features govern solver efficiency. By directly linking topological struc-
tures to algorithmic performance, our work streamlines solver selection while enhancing
computational efficiency, offering a principled approach to MDP optimization.
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1. Introduction

Automated planning and scheduling is a core problem in artificial intelligence (AI) with a
wide range of applications, including robotics, logistics, and management [1]. When planning
problems involve quantifiable uncertainties, Markov Decision Processes (MDPs) are often
used as a modeling framework. In particular, Stochastic Shortest Path MDPs (SSP-MDPs)
are a subclass of MDPs that focus on reaching one (of possibly many) goal state from a
given initial state (or from any state), with the objective of minimizing the expected cost [2].
The transition probabilities are assumed to be known, and each action has an associated
cost. Notably, many other MDP subclasses — such as infinite-horizon discounted MDPs,
widely used in the reinforcement learning community — can be viewed as special cases of
SSP-MDPs [3]. Throughout this paper, we focus exclusively on SSP-MDPs.

The inherent complexity of SSP-MDPs has spurred the development of diverse solvers,
each leveraging distinct algorithmic strategies and assumptions tailored to specific structural
or cost-related conditions. While this specialization enables performance advantages in
targeted scenarios, the sheer variety of available solvers renders manual selection for a given
problem both time-intensive and error-prone. To address this challenge, we introduce a
topology-driven framework to automate solver selection, anchored in four key contributions:

• An overview of topological features predictive of solver performance.
• A first classifier in the literature able to predict the fastest solver for a given MDP.
• An explanability system for the classifier, to provide human-ready explanations.
• An extensive empirical evaluation across 8,000+ synthetic and real-world SSP-MDP

instances, demonstrating our method’s generalizability and practical utility.
The remainder of this paper is organized as follows. Section 2 surveys existing SSP-MDP

planning algorithms, contextualizes scenarios of solver superiority, and reviews explainable
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AI methods for interpreting classifier decisions. Section 3 introduces extreme SSP-MDP
configurations, benchmarks solver performance on these domains, and identifies critical ob-
servations that underpin our topology-driven approach. Section 4 details the design, training
(via machine learning approaches such as iterative random forests), and evaluation of our
topology-aware solver-prediction model. Section 5 evaluates the framework’s accuracy and
generalizability across synthetic and real-world benchmarks. Finally, Section 6 synthesizes
key insights and proposes future directions for topology-informed solver selection.

2. Related Work

2.1. Markov Decision Processes

We use the formalism from the work of Mausam and Kolobov [4] to define the Sto-
chastic Shortest Path MDPs (Definition 1). Research on solving such MDPs has led to
a variety of algorithms, each leveraging different techniques and optimizations. Broadly,
these algorithms can be categorized as follows: classical dynamic programming methods,
prioritization-based approaches, heuristic-based approaches, and hybrid methods.

Definition 1. A Stochastic Shortest Path (SSP) MDP is a tuple (S,A, T, C,G), where:
• S is a finite set of states;
• A is a finite set of actions;
• T : S×A×S → [0, 1] is a transition function, with T (s, a, s′) giving the probability

of transitioning to state s′ when applying action a in state s;
• C : S × A → R+ is a cost function, where C(s, a) gives the cost of applying action
a while in state s1;

• G ⊆ S is the set of goal states (which can be assumed to be terminal or sink states).

Two foundational algorithms for solving MDPs are Value Iteration (VI) [5] and Policy
Iteration (PI) [6]. Both rely on iteratively refining either a value function or a policy until
convergence, guided by the Bellman equations (Definition 2).

Definition 2. The Bellman equations for SSP-MDPs are, ∀s ∈ S:

V (s) =

0 if s ∈ G,
min
a∈A

[
C(s, a) +

∑
s′∈S

T (s, a, s′)V (s)
]

otherwise.

In practice, Value Iteration is often difficult to outperform for dense MDP topologies —
i.e., when most states have actions that connect them to many other states — because com-
mon optimizations in other methods (e.g., state-space pruning or state prioritization) tend
to be less effective in such scenarios. Dense MDPs arise in various real-world applications,
for instance in certain configurations of the popular SysAdmin planning domain [7].

A second category of algorithms prioritizes specific states during the update process
rather than sweeping through the state space in an arbitrary order. A well-known example
is Improved Prioritized Sweeping (IPS) [8], which uses the metric IPS(s) = Res(s)

V (s) , where
Res(s) is the residual (also called the Bellman error) and indicates how much the value of s
would change if it were to be updated with the Bellman equations. Intuitively, the numerator
of the metric captures how far the state is from convergence, while the denominator reflects
how close the state is to a goal state. These prioritization methods can significantly reduce
the number of Bellman backups required for convergence, but the overhead of maintaining

1The cost function can also be defined as C : S×A×S → R+, and is generally assumed to be probabilistic.
In our experiments, we assume a deterministic cost function, though extending the framework to handle
probabilistic costs is straightforward.
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the priority queue often offset these gains. Moreover, the choice of priority metric is critical,
as different metrics can perform better or worse depending on the given MDP instance.

To mitigate the cost of priority-queue maintenance, Topological Value Iteration (TVI)
[9] uses the graph structure of the MDP to order the state updates. By computing a
topological ordering of the strongly connected components (SCCs), TVI avoids the overhead
of managing dynamic priorities altogether. It works particularly well on MDPs containing
a large number of SCCs, as the topological ordering can significantly improve state-values
propagation and reduce the number of Bellman updates required for convergence.

Heuristic-based methods assume an initial state s0 is known and require a heuristic func-
tion h : S → R+ that estimates the cost to reach a goal state from each state. Two common
algorithms in this category are Labeled Real-Time Dynamic Programming (LRTDP) [10] and
Improved Loop And/Or* (ILAO*) [11]. Although heuristics can guide the search efficiently,
domain-independent heuristics are often weak, and developing strong domain-specific heuris-
tics requires additional effort. This trade-off can limit the usefulness of heuristic-based
methods unless high-quality heuristics are readily available, which is often not the case in
practice. Heuristic-based methods are known to perform well on MDPs with a large number
of goal states, as the heuristic can guide the search towards the nearest one.

Hybrid solvers merge complementary algorithmic paradigms to balance trade-offs. For
example, FTVI [9] integrates TVI’s topological ordering with LAO*-style heuristic guidance,
combining their complementary strengths while retaining their inherent limitations. Over
the past decade, solver development has focused on efficiency gains through two primary
strategies: (1) cache optimization (e.g., CECA [12] and eTVI [13]) and (2) parallel com-
putation (e.g., multicore-CECA [14] and pcTVI [15]). These advancements refine existing
methods rather than introducing fundamentally new approaches. By exploring these various
algorithmic strategies, researchers have provided a diverse toolkit for tackling SSP-MDPs.
However, no single solver is universally optimal; each approach excels under specific problem
characteristics, motivating the need for robust solver-selection techniques.

2.2. Explainable AI and Machine Learning

The opacity of modern machine learning models poses critical challenges in domains
requiring auditability, such as healthcare or autonomous systems, where human oversight
demands actionable explanations for algorithmic decisions. In the context of MDP solver
selection, this lack of transparency risks eroding trust in automated recommendations, par-
ticularly when structural domain properties (e.g., goal eccentricity, SCCs) govern solver
efficiency. Explainable AI (XAI) addresses this gap by enabling systems to justify their
predictions through human-interpretable rationales. For our topology-driven framework,
XAI serves two purposes: (1) validating that solver recommendations align with theoretical
expectations of MDP structure, and (2) empowering domain experts to refine topological
feature extraction based on empirical insights. XAI broadly fall into two categories [16]:

• Interpretable Models (e.g., rule-based systems) prioritize transparency by design,
offering intrinsic explanations through human-readable structures like explicit deci-
sion paths. These models trade marginal accuracy gains of more opaque approaches
for direct analyzability, making them ideal for domains like ours where feature im-
portance must be rigorously mapped (e.g., Iterative Random Forests [17]).

• Model-Agnostic Methods treat models as black boxes, deriving post hoc explana-
tions through techniques like counterfactual analysis or feature attribution. While
flexible, they introduce computational overhead and approximate explanations. Lo-
cal methods (e.g., LIME [18]) explain individual predictions (Why was VI chosen
for this MDP?), while global methods (e.g., SHAP [19]) identify overarching feature
importance (How does SCC count generally affect solver performance?).
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Recent advances in explainable AI (XAI), particularly counterfactual explanations [20],
enable “what-if” reasoning by identifying minimal feature perturbations that alter a clas-
sifier’s prediction from one class to another. For instance, in our framework, this answers
questions like “How much must the SCC count increase for TVI to become the recom-
mended solver instead of LRTDP?” The DiCE (Diverse Counterfactual Explanations) al-
gorithm implements this capability through model-agnostic optimization. DiCE generates
diverse counterfactuals by (1) minimizing the distance between original inputs and coun-
terfactuals (proximity), (2) maximizing differences between generated examples (diversity),
and (3) prioritizing sparse feature changes (actionability). By balancing these objectives via
gradient-based optimization, DiCE produces human-interpretable explanations that reveal
how specific topological features govern solver recommendations in data.

While counterfactuals have been applied to policy analysis in MDPs [21], our work pi-
oneers their use for solver selection, explicitly linking topological properties to algorithmic
efficacy. Such techniques align with our framework’s goal of linking topological properties
to solver efficacy. While deep learning methods increasingly adopt XAI algorithms (e.g.,
attention maps for transformers), our work leverages classical interpretable models and
model-agnostic techniques to balance precision and explainability, ensuring domain experts
can both trust and refine solver recommendations without sacrificing predictive accuracy.

3. Motivation

A recent research paper proposed a list of topological features hypothesized to influence
the performance of MDP solvers but did not systematically analyze their individual impacts
or evaluate their relative significance [22]. That work also introduced an algorithm for
generating synthetic MDPs from predefined graph topologies, which we adopt to create a
diverse set of MDP instances for our experiments. In this section, we establish the relevance
of topological properties in predicting solver performance by presenting extreme cases of
MDP planning domains and benchmarking widely-used solvers on these scenarios.

s0

s1 s2

sg

Figure 1. A dense SSP-MDP with three non-goal states. Each state has a single proba-
bilistic action enabling transitions to all other states.

One illustrative extreme case is the dense MDP domain, where all n states are mutually
reachable. We distinguish two sub-cases: (1) a deterministic variant where each state has
n−1 actions, each directly transitioning to a distinct neighboring state, and (2) a stochastic
variant where each state has a single action with non-zero probability of transitioning to
any other state. Figure 1 shows the stochastic sub-case for n = 3 (excluding the goal sg).
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Figure 2. A unidirectional linear SSP-MDP. Each state transitions deterministically to
the subsequent state in the chain.

Another extreme SSP-MDP configuration is the linear domain, where states form a single
path to the goal (Figure 2). We identify three sub-cases: (1) unidirectional deterministic,
where each state has a single action transitioning to the next state; (2) bidirectional deter-
ministic, where each state has two actions — one advancing to the next state, the other
returning to the previous state; and (3) bidirectional stochastic, where each state has a single
probabilistic action with non-zero probability of progressing or regressing.

Table 1 compares the running time of four MDP solvers — VI, LRTDP, ILAO* and TVI
— across diverse domain configurations. The second column, n, denotes the number of
states in each domain. Key observations include:

• Heuristic search algorithms (LRTDP, ILAO*) excel in domains with deterministic
actions, which can more easily be detected suboptimals and pruned from the state-
space (e.g., achieving 0.1 ms in denseDet);

• VI performs optimally in highly stochastic domains (e.g., 196,211 ms in denseProb),
as the structure of such MDPs makes it practically impossible to improve the con-
vergence rate by using prioritization or heuristic techniques;

• TVI-based algorithms dominate in structured domains with strongly connected com-
ponents (SCCs). For instance, in the unidirectional linear domain (linearUniDir),
eiTVI completes in 129 ms by exploiting SCCs to perform a single Bellman backup
per state, while VI requires 2,594,650 ms due to only doing one useful Bellman
backup per complete sweep through the state-space.

Table 1. Running times (ms) obtained for each solvers on the tested domains. The
fastest time on each domain is bolded.

Name n VI LRTDP ILAO* TVI

linearUniDir 10000000 2594650 564 16912088 497
linearBidirDet 100000 1577974 9 >1h 1721993
linearBidirProb 130 983 4579 2885 982
denseDet 10000 1660 0.1 0.1 1825
denseProb 10000 196211 684211 676912 208256

Another critical observation emerges in the bidirectional stochastic linear domain: testing
instances with more than approximately 130 states becomes computationally prohibitive due
to LRTDP’s exponential runtime growth. This inefficiency arises from LRTDP’s reliance
on sampling trajectories from the initial state until a goal is reached. In such domains,
the probability of reaching the goal diminishes exponentially with the number of states —
a behavior analogous to an unbiased random walk — making successful goal attainment
increasingly unlikely within practical time constraints. To our knowledge, this work is the
first to identify a previously unreported limitation of LRTDP: its inadequacy in domains
where even the optimal policy inherently exhibits a low probability of reaching the goal.

4. Solver Selection Classifier

This section details our framework for solver selection, including (1) the topological fea-
tures predictive of solver performance and (2) the design and training of the classifier.
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4.1. Topological Feature Engineering

We identified eight topological features that capture critical structural properties of SSP-
MDPs, grouped into three categories:
Graph Scale & Complexity:

• State Count |S|: Directly impacts computational complexity and influences solver
suitability (e.g., SCC decomposition becomes less beneficial for small |S|).

• Action Density: Average actions per state, reflecting branching factor sensitivity.
• Stochasticity: Average probabilistic transitions per action, quantifying the level

of uncertainty inside the planning domain.
Connectivity Structure:

• Strongly Connected Components (SCCs): Total SCC count, critical for TVI-
based algorithms leveraging topological ordering.

• Max SCC Size: Size of the largest SCC, indicating connectivity skew (e.g., one
dominant SCC vs. balanced partitioning).

• Clustering Coefficient: C = 1
|S|

∑
s∈S

es
ks(ks−1) , where es = directly connected

state pairs from s, and ks = directly reachable states from s (C = 0 if ks < 2).
Measures local “cliquishness” of transitions.

Goal-Oriented Properties:
• Goal Density: Ratio of goal states |G|

|S| , influencing heuristic solvers like ILAO*.
• Goal Eccentricity: G = ming∈G maxs∈S d̄(s, g), where d̄(s, g) = minimal action

steps (ignoring costs) to reach g from s. Quantifies worst-case planning horizon.

4.2. Classifier Design and Training

Algorithm 1 Train Solver Selection Classifier
Require: MDP instances I, solvers S, features F

1: for all I ∈ I do
2: Extract features F(I) from I using F
3: for all S ∈ S do
4: Solve I with S; record runtime T (S, I)

5: Label I with fastest solver arg minS∈S

6: Train the classifier R on {(F(I), label(I))}
7: Extract features importance from R
8: return R

Prior heuristic rules for solver selection (e.g., “use TVI for domains with many SCCs”)
are limited in scope and fail to generalize across heterogeneous MDPs. To address this, we
train an interpretable classifier (Iterative Random Forest [17]) on a corpus of 8, 000+ MDP.
Each instance is labeled with the empirically fastest solver (among VI, LRTDP, ILAO* and
TVI), enabling the model to learn mappings between topological features and optimal solver
choices. Algorithm 1 outlines the training process. The framework supports configurable
feature sets to balance training time and model complexity. For example, computing the
clustering coefficient (Section 4.1) incurs O(n2) time or space complexity (depending on the
implementation), making it impractical for MDPs with over a million states. To mitigate
this, users can choose to exclude computationally intensive features during configuration.
To refine the feature set explainability, we employ two complementary models.:

• a global classifier (LightGBM [23]) predicts the fastest solver, prioritizing accuracy
while maintaining explanability through feature importance rankings;
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• solver-specific classifiers (Iterative Random Forests [17]) predict runtime distribu-
tions for individual solvers, capturing high-order feature interactions to explain edge
cases (e.g., why TVI underperforms in some cases despite high SCC counts).

To ensure transparency, we generate (1) counterfactual explanations [19], which identify
minimal feature perturbations that alter solver recommendations (e.g., “TVI becomes opti-
mal if SCCs increase by 20%”), and (2) rule-based insights, which extract decision rules from
Iterative Random Forests using Gini impurity, highlighting thresholds (e.g., “Goal density
> 0.1 favors LRTDP”). This dual approach balances predictive performance with actionable
insights, enabling domain experts to validate and refine recommendations.

5. Experiments

This section evaluates the effectiveness of our topology-driven solver selection framework
through three key steps: (1) we detail the synthetic and real-world MDP instances used for
training and testing, emphasizing their structural diversity, (2) we describe the hardware and
solver configurations to ensure reproducibility of runtime measurements and (3) we rigor-
ously evaluate the global classifier’s accuracy, dissect feature importance via counterfactual
explanations, and validate individual solver performance predictions.

5.1. MDP Instances used for training

The classifier was trained on MDP instances generated from seven distinct models (Ta-
ble 2), selected to represent diverse topological characteristics. The first four models — syn-
thetic graph-theoretical structures — were converted into SSP-MDPs using the algorithm
proposed by [22]. They cover various topological properties: Kronecker and Erdös-Rényi
models are often less dense and have a larger number of SCCs, whereas Barabási-Albert
and Watts-Strogatz (SmallWorld) models are denser and have usually fewer SCCs. The
remaining three models are established real-world MDP benchmarks. The Layered domain
is a parametric planning benchmark introduced in TVI’s foundational work to study the
impact of SCCs. Key parameters include SCC count (layers), states per layer, actions per
state, and stochastic branching factors. The Wetfloor domain is a navigation problem used
in the ICAPS international planning competitions [24], where agents crosses a grid while
avoiding slippery tiles that induce stochastic motion. Finally, the Single-Armed Pendulum
(SAP) domain is a continuous-state optimal control problem requiring precise balancing of
an inverted pendulum. Its deterministic instance generator limits dataset diversity — each
size n produces a single instance, forcing reliance on impractically large n for scalability.

Table 2. MDP Models used for the classifier training

Name Reference Number of instances

Erdös-Rényi [25] 1614
Barabási-Albert [26] 1989
Watts-Strogatz (SmallWorld) [27] 1968
Kronecker [28] 1448

Layered [9] 880
WetFloor [29] 200
Single-Armed Pendulum (SAP) [30] 91

We extracted the eight topological features outlined in Section 4.1 across 8,190 MDP
instances. The dataset was partitioned into an 80-20 training-test split to evaluate gen-
eralization performance, with the split applied within each class to ensure the presence of
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validation datapoints for every class. To complement the primary multi-class classifier (pre-
dicting the fastest solver), we trained four binary classifiers — one per solver — to identify
instances where a solver’s runtime fell within the top 50% of its performance distribution.
This dual approach enables both solver recommendation and runtime efficiency prediction,
providing actionable insights into when a solver is likely to perform well, even if not optimal.

5.2. Computing Environment

We evaluated the running time of (1) VI, implemented with asynchronous Round-Robin
updates; (2) LRTDP; (3) ILAO*; and (4) TVI until convergence to an ε-optimal value
function, where ε = 0.001). For LRTDP and ILAO*, we used the domain-independent
heuristic initially proposed by LRTDP’s authors [10]: hmin(s) = 0 if s is a goal state, and
hmin(s) = mina∈As

[
C(s, a)+mins′∈succa(s) V (s′)

]
otherwise, where As is the set of applica-

ble actions in state s and succa(s) is the set of states reachable from s by applying action a.
All solvers were executed on MDPs encoded in the CSR-MDP format [22], a cache-optimized
representation designed to reduce memory bottlenecks. They were all implemented in C++
using the g++ 13.3 compiler (with optimisation level -O3). Experiments ran on a Linux
server (Ubuntu 24.04) with dual Intel Xeon Gold 6338 CPUs (2.0 GHz, 96 MiB L3 cache
per socket) and 388 GB DDR4 RAM. Despite the server’s 64-core capacity, each solver oper-
ated in single-threaded mode. The large L3 cache (192 MiB total) aligned with CSR-MDP’s
design, minimizing latency during state-space traversals.

5.3. Global Classifier Performance

The global classifier achieved 66% accuracy on the test set (n=1,638), demonstrating
robust performance for heuristic-driven solvers like LRTDP (83% recall) but revealing lim-
itations in distinguishing edge cases for VI (14% recall). Precision metrics (Table 3) and
the confusion matrix (Figure 3) reveal four critical insights about solver performance and
dataset characteristics. First, VI’s theoretical strength in dense, stochastic MDPs with
sparse goals fails to translate to high precision (56.76%) due to underrepresentation of such
edge cases in our synthetic dataset — a limitation exacerbated by the prohibitive storage
requirements of large-scale dense MDPs. Second, TVI emerges as the most reliable solver
for structured domains, with robust precision (79.66%) and recall (59.49%) attributable to
its alignment with well-captured topological features like SCCs and goal eccentricity. Third,
LRTDP dominates heuristic-friendly environments, achieving the highest F1-score (73.01%)
by leveraging goal proximity and deterministic transitions patterns abundantly represented
in both synthetic and real-world benchmarks. However, frequent misclassifications between
LRTDP and ILAO* (evident in ILAO*’s diminished precision of 50.7%) suggest overlap-
ping feature footprints among heuristic-driven solvers. This ambiguity points to a need for
finer-grained topological descriptors, such as transient state distributions or reward gradient
patterns, to better differentiate heuristic optimization pathways.

Table 3. Global classifier performance metrics. LRTDP dominates in recall, while TVI
leads in precision.

Solver Precision (%) Recall (%) F1-score

VI 56.76 13.55 0.219
LRTDP 65.16 83.01 0.730
ILAO* 50.70 37.32 0.430
TVI 79.66 59.49 0.681
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Figure 3. Confusion matrix of the global classifier.

Table 4. Feature importance scores (0-1) from DiCE counterfactuals. Higher values
indicate stronger influence.

Feature VI LRTDP ILAO* TVI

Nodes 0.186 0.161 0.298 0.400
Goals Ratio 0.185 0.181 0.380 0.345
SCC Count 0.194 0.189 0.203 0.142
Largest SCC 0.173 0.177 0.357 0.400
Clustering Coeff. 0.219 0.222 0.121 0.411
Goal Eccentricity 0.242 0.210 0.102 0.912
Avg. Actions 0.228 0.200 0.230 0.914
Avg. Effects 0.178 0.179 0.310 0.418

Feature importance analysis (Table 4) reveals that goal eccentricity and average actions
per state are pivotal for TVI — a finding consistent with its theoretical optimization of
structured, highly connected domains where these features dominate. Conversely, ILAO*’s
reliance on goal density and SCC size reflects its heuristic capacity to identify optimal paths
to the nearest goal in MDPs with abundant terminal states and loosely coupled compo-
nents. LRTDP and VI exhibit secondary dependencies: LRTDP’s performance correlates
with clustering coefficients (indicative of locally connected decision points), while VI favors
stochastic transitions (common in dense MDPs). These patterns align with the decision tree
in Figure 4, where splits on goal eccentricity (≤ 12.4) and SCC count (> 3) drive 78% of
LRTDP and 92% of TVI predictions. The strong linkage between TVI and goal eccentric-
ity further underscores its role in domains requiring long-horizon planning, while ILAO*’s
SCC-driven behavior highlights its niche in fragmented state spaces with multiple near-term
goals. These findings underscore the need for refined topological descriptors — particularly
to differentiate heuristic solvers and address VI’s edge cases. Future work could integrate
transient state ratios or reward distribution metrics to enhance discriminative power.

5.4. Individual Solver Performance Analysis

The iterative random forest’s Gini importance scores (Table 5) reveal distinct feature de-
pendencies across solvers. VI and TVI exhibit strong reliance on node count (Gini = 0.761
and 0.893), reflecting their need for exhaustive state-space traversal in dense MDPs. Con-
versely, LRTDP and ILAO* prioritize goal density (Gini = 0.846 and 0.518), aligning with
their heuristic focus on goal proximity. Notably, ILAO* also depends on largest SCC size
(Gini = 0.385), suggesting its heuristic benefits from clustered state groups that reduce
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search complexity. TVI’s minimal dependence on SCC count (Gini = 0.016) contrasts with
expectations, indicating that SCC quality (e.g., ordering) may matter more than quantity.

avgNumActions <= 9.887
gini = 0.562

samples = 6081
value = [0.083, 0.597, 0.268, 0.052]

SCC <= 82121.5
gini = 0.668

samples = 633
value = [0.084, 0.403, 0.133, 0.38]

True

Largest SCC <= 15276.5
gini = 0.528

samples = 5448
value = [0.083, 0.62, 0.283, 0.014]

False

gini = 0.649
samples = 401

value = [0.122, 0.262, 0.113, 0.504]

gini = 0.521
samples = 232

value = [0.018, 0.647, 0.168, 0.167]

gini = 0.418
samples = 2118

value = [0.074, 0.741, 0.162, 0.024]

Goals Ratio <= 0.244
gini = 0.567

samples = 3330
value = [0.089, 0.543, 0.36, 0.008]

avgNumEffects <= 5.497
gini = 0.479

samples = 1071
value = [0.102, 0.687, 0.195, 0.017]

Goals excentricity <= 2.5
gini = 0.575

samples = 2259
value = [0.082, 0.475, 0.439, 0.004]

gini = 0.448
samples = 1013

value = [0.083, 0.709, 0.205, 0.003]

gini = 0.661
samples = 58

value = [0.428, 0.296, 0.019, 0.256]

gini = 0.575
samples = 1580

value = [0.09, 0.415, 0.495, 0.0]

gini = 0.521
samples = 679

value = [0.063, 0.615, 0.309, 0.012]

Figure 4. Decision tree for solver selection.

Table 5. Gini importance scores (0-1) for individual solver classifiers. Higher values
indicate greater influence on runtime predictions.

Feature VI LRTDP ILAO* TVI

Nodes 0.761 0.033 0.000 0.893
Goals Ratio 0.026 0.846 0.518 0.022
SCC Count 0.008 0.000 0.000 0.016
Largest SCC 0.093 0.000 0.385 0.013
Clustering Coeff. 0.004 0.032 0.006 0.018
Goal Eccentricity 0.074 0.000 0.029 0.023
Avg. Actions 0.028 0.043 0.000 0.010
Avg. Effects 0.006 0.046 0.062 0.005

Table 6. Binary classifier performance for predicting solver runtime efficiency (Fast: top
50%, Slow: bottom 50%). VI and TVI achieve > 90% precision, while heuristic solvers
(LRTDP, ILAO*) show greater variability.

Metric VI LRTDP ILAO* TVI
Fast Slow Fast Slow Fast Slow Fast Slow

Precision (%) 91.28 95.22 67.98 82.03 65.81 77.01 93.21 94.44
Recall (%) 95.55 90.65 87.58 57.89 84.01 55.10 94.73 92.85

F1-score (%) 93.37 92.88 76.54 67.88 73.81 64.24 93.96 93.64

Table 6 highlights the binary classifiers’ ability to predict whether a solver will achieve
a “fast” runtime (top 50% of its performance distribution). VI and TVI classifiers excel
(F1 > 93%), as their runtimes correlate strongly with structural features like node count.
In contrast, heuristic-based solvers (LRTDP, ILAO*) show lower precision (65-82%), re-
flecting their sensitivity to goal distributions and stochastic transitions factors less reliably
captured by current topological descriptors. These results reinforce the need for dynamic
goal-proximity metrics to enhance heuristic solver predictions.
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6. Conclusion

In this work, we introduced a topology-driven approach to solver selection for Stochastic
Shortest Path Markov Decision Processes (SSP-MDPs). By training a machine learning
classifier on a wide range of planning domains, we demonstrated the ability to predict the
fastest solver for a given MDP instance based on its topological properties. Our empiri-
cal evaluation highlights the classifier’s effectiveness, reducing computational overhead by
streamlining solver selection, particularly in domains with extreme structural characteristics.
To support reproducibility and community adoption, we have open-sourced our implemen-
tations of MDP solvers, feature extraction pipelines, and classification algorithms2.

This work opens four key directions for future research: (1) explore novel topological fea-
tures, such as transition and reward distributional properties to enhance prediction accuracy,
(2) expand the set of solvers considered in the experiments, including more recent algorithms
and hybrid approaches (e.g., eiTVI, CECA, etc.), (3) adapt the proposed classifier to handle
broader MDP classes, including infinite-horizon discounted MDPs and partially observable
MDPs, and (4) develop an automated pipeline that extracts topological features, selects the
optimal solver via our classifier, and executes it — quantifying when the meta-approach’s
overhead is negligible compared to solver runtime savings. Such advancements could estab-
lish topology-aware solver selection as a standard preprocessing step in MDP optimization,
bridging the gap between theoretical properties and practical algorithm performance.
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